
SMT-COMP 2023
18th International Satisfiability Modulo Theory Competition

Martin Bromberger Jochen Hoenicke François Bobot

CEA List, France

MPI für Informatik, Germany

Certora, Israel

July 5, 2023

1

SMT-COMP

Annual competition for SMT solvers
on (a selection of) benchmarks from SMT-LIB

History

2005 first competition
2013 evaluation instead

of competition
2014 since then hosted

by StarExec

Goals:

spur development of SMT solver implementations

promote SMT solvers and their usage

support the SMT-LIB project
to promote and develop the SMT-LIB format

model validation
proof checking

to collect relevant benchmarks

engage and include new members

2

SMT Solvers and SMT-LIB
SMT Solver

checks formulas in SMT-LIB format for satisfiability modulo theories

SMT-LIB is

1 a language in which benchmarks are written

2 a community effort to collect benchmarks

Non-incremental

434 212 instances (+42849)

with 1 query each
in 83 logics (+2).

Incremental

43 287 instances (+2)

with 34 036 491 queries (+37 556)

in 38 logics.

Selected Non-incremental

227 940 instances

Selected Incremental

22 302 instances

3

SMT Solvers and SMT-LIB
SMT Solver

checks formulas in SMT-LIB format for satisfiability modulo theories

SMT-LIB is

1 a language in which benchmarks are written

2 a community effort to collect benchmarks

Non-incremental

434 212 instances (+42849)

with 1 query each
in 83 logics (+2).

Incremental

43 287 instances (+2)

with 34 036 491 queries (+37 556)

in 38 logics.

Selected Non-incremental

227 940 instances

Selected Incremental

22 302 instances

3

Competition Overview

SMT-LIB Tracks Divisions Logics

non-
incremental

incremental

single que.

unsat core

model val.

parallel

cloud

incremental

Arith LIA
LRA

NIA
NRA

Bitvec BV

Equality UF
UFDT

Equality+LinearArith UFIDL
UFLIA
UFLRA

ALIA
AUFLIA
AUFLIRA

. . .

Equality+MachineArith ABV
ABVFP
AUFBV

AUFBVFP
AUFBVDTLIA
AUFBVDTNIA

. . .

...

4

SMT-COMP Tracks (traditional)
Single Query (SQ) Track

Determine satisfiability of one problem

Solver answers sat/unsat/unknown

Unsat Core Track

Find small unsatisfiable subset of input.

Solver answers unsat + list of formulas.

Model Validation Track

Find a model for a satisfiable problem.

Solver answers sat + value for each non-logical symbol.

Incremental Track

Solve many small problems interactively.

Solver acks commands and answers sat/unsat for each check.

5

SMT-COMP Tracks (experimental)
Model Validation

Division with quantifier-free floating-point logics
Model validation with Dolmen (thanks to Gillaume Bury and François Bobot)

Cloud and Parallel Track (sponsored by AWS, led by Mike Whalen)

Solve a large problem over the cloud (or a big computer)
100 machines, 1600 cores, 6400 GB of memory (cloud)
64 cores, 256 GB of memory (parallel)

Solver answers sat/unsat/unknown

Proof Exhibition Track

Solver submitted together with a checker for unsatisfiability proofs
No predefined format or checker
No ranking
Qualitative assessment

As last year the sat/unsat results from sound solvers in SQ were used to include
benchmarks on the MV, UC and PE tracks.

6

SMT-COMP Tracks (experimental)
Model Validation

Division with quantifier-free floating-point logics
Model validation with Dolmen (thanks to Gillaume Bury and François Bobot)

Cloud and Parallel Track (sponsored by AWS, led by Mike Whalen)

Solve a large problem over the cloud (or a big computer)
100 machines, 1600 cores, 6400 GB of memory (cloud)
64 cores, 256 GB of memory (parallel)

Solver answers sat/unsat/unknown

Proof Exhibition Track

Solver submitted together with a checker for unsatisfiability proofs
No predefined format or checker
No ranking
Qualitative assessment

As last year the sat/unsat results from sound solvers in SQ were used to include
benchmarks on the MV, UC and PE tracks.

6

SMT-COMP Tracks (experimental)
Model Validation

Division with quantifier-free floating-point logics
Model validation with Dolmen (thanks to Gillaume Bury and François Bobot)

Cloud and Parallel Track (sponsored by AWS, led by Mike Whalen)

Solve a large problem over the cloud (or a big computer)
100 machines, 1600 cores, 6400 GB of memory (cloud)
64 cores, 256 GB of memory (parallel)

Solver answers sat/unsat/unknown

Proof Exhibition Track

Solver submitted together with a checker for unsatisfiability proofs
No predefined format or checker
No ranking
Qualitative assessment

As last year the sat/unsat results from sound solvers in SQ were used to include
benchmarks on the MV, UC and PE tracks. 6

Tracks, Solvers, Divisions, and Benchmarks

Teams: 25 (+4)

Track Solvers Divisions Benchmarks

Single Query 22(=) 19(=) 113 139
Incremental 7(-1) 17(=) 22 301
Unsat Core 6(=) 16(-1) 72 958

Model Validation 11(+3) 13(+ 6 exp.) 61 083
Proof Exhibition 4(=) 19 exp. 59 114

Parallel 3(-1) 4 exp. 400
Cloud 2(-2) 4 exp. 400

Number in parenthesis shows changes from 2022

7

Participants
SMT-COMP 2022 participants rely on multiple reasoning frameworks:

CDCL(T), Saturation, MCSAT, CP

automata

finite domain

local search

besides wrappers extending the scope of existing solvers

Seven new solvers participated:

iProver (Korovin et al.)

SMT-RAT-MCSAT (Jasper Nalbach et al.)

UltimateIntBlastingWrapper+SMTInterpol (Max Barth et al.)

Yaga (Hanák et al.)

Z3-alpha (Lu et al.)

Z3-Noodler (Havlena et al.)

Z3-Owl (Ma et al.)

8

Solver Presentation

9

Bitwuzla at the SMT-COMP’23
Aina Niemetz, Mathias Preiner

Tracks/Divisions: ^(QF)?(A)?(UF)?(BV|FP|FPLRA)+$
in tracks Single Query, Incremental, Unsat Core, and Model Validation

Hightlights

∠ New SMT solver for theories A, BV, FP, UF + quantifiers

∠ Rewrite from scratch

∠ previous versions were extended fork from Boolector

∠ system description at CAV 2023

https://bitwuzla.github.io

10

COLIBRI(2023) Bruno Marre et al

CP solver:
No SAT solver
Combination done by explicitely building a model

main theories: FP, LIA ↔ BV

Some fixes
Add some reasoning for transcendental functions

SMT2021 | Bruno Marre, F.Bobot, Zakaria Chihani | p. 2

11

cvc5 at the SMT Competition 2023

L. Aniva H. Barbosa C. Barrett M. Brain V. Camillo G. Kremer H. Lachnitt A. Mohamed

M. Mohamed A. Niemetz A. Nötzli A. Ozdemir M. Preiner A. Reynolds Y. Sheng C. Tinelli A. Wilson Y. Zohar

cvc5 1.0.5

• Support for all standardized SMT-LIB theories

• User-friendly API

Features/Improvements

• New handwritten parser and lexer

• Bit-vector solver, integrating efficient SAT solvers, e.g., CaDiCaL, with CDCL(T)

• Syntax-guided and model-based quantifier instantiation

• Minor improvements to the lemma schemas used for the theory of strings

• Better performance for proof generation

Configurations
cvc5 entered all divisions in all tracks (non-experimental).

• Single query track: Sequential portfolio

• Unsat-core track: Based on new proof module and assumptions in the SAT solver

Follow the development: https://cvc5.github.io/

12

cvc5-NRA-LS

video: slides-cvc5-nra-ls.mp4

13

iProver

video: slides-iProver.mp4

14

ismt, Yices-ismt

video: slides-ismt.mp4

15

ISMT
Fuqi Jia, Rui Han, Minghao Liu, Cunjing Ge, Pei Huang, Feifei Ma, Jian Zhang.

 ISMT is a pure bit-blasting based SMT solver, participating QF_NIA model validation track;

 YICES-ISMT combines YICES2 for unsat reasoning, participating in QF_NIA single query track.

 ISMT:

 YICES-ISMT: YICES(𝜙𝜙) → ISMT(𝜙𝜙) → YICES(𝜙𝜙 ∧ 𝜓𝜓).

 𝜓𝜓 rule out failed space.

 Link: https://github.com/MRVAPOR/BLAN

Dependencies
- Yices 2.6.2
- Libpoly v0.1,11
- CaDiCal 1.5.2 16

OpenSMT at SMT-COMP 2023

Interpolating CDCL(T) SMT solver

Developed at University of Lugano, Switzerland
https://github.com/usi-verification-and-security/opensmt

Support for linear arithmetic, uninterpreted functions, arrays

Alternative lookahead core

Used in Horn solver Golem

New in 2023 edition ,
Support for incrementality and interpolation in lookahead core
Theory combination with arrays

On hold in 2023 edition /
Proof track
Parallel and cloud track

17

Ostrich

video: slides-Ostrich.mkv

18

SMTInterpol
Jochen Hoenicke, Tanja Schindler, . . .

Interpolating SMT solver

based on CDCL(T)

for Arrays, Uninterpreted Functions,
Linear Integer and Real Arithmetic

plus div and mod with constants,

and Data Types

supports quantifiers

produces models, proofs, and unsat cores

computes sequence and tree interpolants

SMTInterpol at SMT-COMP 2023

models for data type logics

optimize size of proofs

proof check in single query/unsat core

Try it in your browser:

https://tinyurl.com/smtinterpol

19

SMT-RAT 23.05

P
ar
se
r

F
ro
n
te
n
d

Optimization

MaxSMT

Unsat Cores

SAT

S
tr
at
eg
y

M
an
ag
er

M-1 M-2 M-3

M-4

M-5 M-6

M-7 M-8

▶ SMT-RAT-MCSAT strategy
▶ MCSAT module based on minisat
▶ Fourier-Motzkin, interval constraint propagation, virtual substitution, one-cell

construction, NLSAT-style model based projections
▶ new: subtropical satisfiability
▶ new: approximations in single cell construction
▶ new: partially we use libpoly

Nalbach, Promies, Ábrahám (THS) SMT-RAT 23.05 1 / 120

UltimateEliminator+MathSAT

video: slides-UltimateEliminator.mkv

21

Vampire 4.8
Reger, Suda, Voronkov, Kovács, Bhayat, Gleiss,

Hajdu, Hozzová, Rath, Rawson, Schoisswohl

https://vprover.github.io/

I General Approach: proof search using the Superposition Calculus
(and finite model finding in UF)

I SMT Logics: A, DT, LIA, LRA, NIA, NRA, UF (all with quantifiers)
I Uses a portfolio of strategies

Parallel track: parallelize strategies
Cloud track: randomize problem and strategies per node

I Use Z3 for ground reasoning (AVATAR)
I New for arithmetic: ALASCA Calculus and new simplification rules

22

Yaga—MCSat-based SMT solver

Developed at Charles University, Prague, Czech Republic

Drahoḿır Hanák, Martin Blicha, Jan Kofroň

Student project, from December 2022

Support for QF LRA

Support for models

Future work

More theories
Model-based interpolation

https://github.com/d3sformal/yaga

1
23

Yices2 in SMT-COMP 2023 (SMT-comp 2023)

Bruno Dutertre, Aman Goel, Stéphane Graham-Lengrand, Ahmed Irfan, Dejan
Jovanović, Ian A. Mason

https://yices.csl.sri.com/

Two solvers: CDCL(T) & MCSAT
Support:
• Quantifier-free: non-linear arithmetic (MCSAT only), linear arithmetic,

bitvectors, uninterpreted functions, and arrays.
• With quantifiers: uninterpreted functions only, via E-graph matching and

model-based instantiation.
Bitvectors: Yices 2/CDCL(T) uses bitblasting.
For QF_BV, it can optionally use third-party backend SAT solvers:
CaDiCaL, CryptoMiniSat, and Kissat (the SMT-comp version uses Kissat for
single-query and model validation tracks).
Functionalities: incremental and push/pop modes, unsat cores, model
minimization and implicants, Model-Based Over-approximations, Model-Based
Under-approximations, Craig Interpolants.

2023 :
• arrays in MCSAT
• new variable decision and clause scoring heuristics in MCSAT. 24

YicesQS, an extension of Yices2 for quantifiers (SMT-comp 2023)
Stéphane Graham-Lengrand https://github.com/disteph/yicesQS

Same solver as in the 2022 SMT-comp.1

YicesQS implements a variant of the QSMA algorithm presented at CADE’2023:
https://www.csl.sri.com/users/sgl/Work/Reports/CADE2023.pdf
Lazy approach to quantifier elimination based on Model-Based Over-approximations
(MBO) and Model-Based Under-approximations (MBU). YicesQS is written in OCaml,
using Yices2 as a library via its OCaml bindings.
2023: YicesQS entered NRA, NIA, LRA, LIA and BV (single-track), & generally targets
complete theories with procedures for answering 3 types of quantifier-free queries:
• Satisfiability modulo assignment / modulo a model (here relying on MCSAT)
• MBU (here using invertibility conditions for BV, CAD projections for arithmetic)
• MBO (here again relying on MCSAT, incl. CAD for arithmetic)

YicesQS Yices2 library
input formula

with quantifiers
3 types of

quantifier-free
queriesSAT / UNSAT

1 YicesQS-2023 (Starexec solver 45053, too late for 2023 SMT-comp)
is way better at BV, solves 805/970 instances out of the 2022
single-track BV selection. 25

Z3-Z3++

https://youtu.be/fBB0Wxxf9vA

26

https://youtu.be/fBB0Wxxf9vA

Other participants

Q3B

Q3B-pBDD

STP

UltimateIntBlastingWrapper+SMTInterpol

z3-alpha

Z3-Noodler

Z3-Owl

27

Non-Competitive Solvers

Submitted by organisers

Best solvers, per division, from previous years (27 Solvers)

Submitted by participants

Fixed solvers (OSTRICH, Z3-Owl, Bitwuzla, Yices2, Z3-Noodler, iProver)

28

Scoring

Computing scores:

Single Query/Parallel/Cloud: number of solved instances

Incremental: number of solved queries

Unsat Core: number of top-level assertions removed

Model Validation: number of solved instances with correct models

Error scores:

All Tracks: given for sat reply for unsat instance, or vice versa

Unsat Core: given if returned core is satisfiable.

Model Validation: given if given model evaluates formula to false

Error scores are draconian.

29

Score and Ranking

In each track we collect different scores:

Sequential score (SQ, UC, MV): all time limits apply to cpu time

Parallel score (all): all time limits apply to wallclock time

SAT score (SQ): parallel score for satisfiable instances

UNSAT score (SQ): parallel score for unsatisfiable instances

24s (SQ): parallel score with time limit of 24s

Division ranking (for each score)

For each division, one winner is declared

Two competition-wide rankings (for each score)

Biggest lead: division winner with most score difference to second place

Largest contribution: improvement each solver provided to a virtual best solver

30

Results

⊤ satisfiable ⊥ unsatisfiable
; sequential ‖ parallel
24 less than 24s inc incremental
uc unsat core mv model validation

Experimental track are added in the slides but are not present in the certificates

31

Bitwuzla

Overall Winner
Biggest Lead(inc)

Winner of the Divisions
Bitvec(⊤,24), Equality+MachineArith(inc), FPArith(;,‖,⊤,⊥,24,inc,uc),
QF ADT+BitVec(mv), QF Bitvec(inc),
QF Equality+Bitvec(;,‖,⊤,⊥,24,inc,mv), QF FPArith(;,‖,⊤,⊥,24,inc,mv)

Winner of the Logics (where it did not win the corresponding division)
ABVFP(⊤,24), ABVFPLRA(24), AUFBV(;,‖,⊤,⊥,24),
AUFBVFP(;,‖,⊤,⊥,24), QF ABVFP(uc), QF ABVFPLRA(uc),
QF BVFP(uc), QF BVFPLRA(uc), UFBV(;,‖,⊤,⊥,24), UFBVFP(;,‖,⊥)

32

COLIBRI

Winner of the Logics
QF ABVFPLRA(;,‖,⊥,24), QF FP(⊥,24), QF FPLRA(⊥,24)

33

cvc5

Overall Winner
Biggest Lead(;,‖,⊤,⊥,uc), Largest Contribution(;,‖,⊤,⊥,24,inc,uc)

Winner of the Divisions
Arith(;,‖,⊥,inc,uc), Bitvec(;,‖,⊥,inc,uc), Equality(;,‖,⊤,⊥,inc,uc,cloud),
Equality+LinearArith(;,‖,⊤,⊥,24,inc,uc,cloud),
Equality+MachineArith(;,‖,⊤,⊥,24,uc),
Equality+NonLinearArith(;,‖,⊤,⊥,24,inc,uc), QF Datatypes(;,‖,⊤,⊥,uc;),
QF Equality(inc), QF Equality+Bitvec+Arith(inc),
QF Equality+NonLinearArith(;,‖,⊥,24,inc,uc,mv), QF FPArith(uc),
QF LinearIntArith(⊥), QF LinearRealArith(⊥),
QF NonLinearRealArith(⊥,24), QF Strings(;,‖,⊤,⊥)

Winner of the Logics (where it did not win the corresponding division)
LIA(⊤,24), NIA(⊤,24), QF ALIA(inc), QF AUFLIA(uc,mv), QF AX(mv),
QF BVFPLRA(inc), QF FP(⊤,mv), QF IDL(uc), QF NIRA(;,‖,⊥),
QF UFBVDT(;,‖,⊤,⊥,24), QF UFDTLIRA(;,‖,⊤,⊥,24,uc), QF UFLRA(uc),
QF UFNIA(⊤), UFDT(24), UFNIA(cloud)

34

iProver

Winner of the Divisions
Equality(parallel), Equality+LinearArith(parallel)

Winner of the Logic (where it did not win the corresponding division)
ANIA(⊥)

35

OpenSMT

Winner of the Divisions
QF Equality+LinearArith(⊥), QF LinearRealArith(⊤,inc,mv)

Winner of the Logics (where it did not win the corresponding division)
QF LIA(;,‖), QF LRA(;,‖,⊥,24), QF UFIDL(;,‖,⊤,mv)

36

OSTRICH

Winner of the Logic
QF S(;,‖,⊥)

37

SMTInterpol

Overall Winner
Biggest Lead(24)

Winner of the Divisions
QF ADT+LinArith(mv), QF Datatypes(24,uc‖,mv),
QF Equality+LinearArith(;,‖,⊤,inc,mv), QF NonLinearIntArith(inc)

Winner of the Logics (where it did not win the corresponding division)
ALIA(⊤,uc), AUFDTLIA(uc), QF ALIA(uc), QF ANIA(;,‖,⊤,⊥,24,inc,uc),
QF AUFNIA(;,‖,⊤,⊥,24,uc), QF LIA(⊥), QF UF(uc‖), QF UFDT(uc;),
QF UFDTLIA(⊥,24,uc), UFIDL(⊤), UFLIA(⊤)

38

STP

Winner of the Division
QF Bitvec(;,‖,⊤,⊥,24,mv)

39

Vampire

Overall Winner
Biggest Lead(cloud,parallel)

Winner of the Divisions
Arith(cloud,parallel), Equality(24),
Equality+NonLinearArith(cloud,parallel)

Winner of the Logics (where it did not win the corresponding division)
ALIA(;,‖,⊥,24), AUFLIA(⊥,24,cloud,parallel), AUFLIRA(24),
AUFNIRA(‖,⊥,24), UF(;,‖,⊤), UFDTLIA(24,uc), UFDTNIA(;,‖,⊥,24,uc),
UFLIA(cloud,parallel)

40

Yices2

Winner of the Divisions
QF Bitvec(uc), QF Equality(;,‖,⊤,⊥,24,uc,mv),
QF Equality+Bitvec(uc), QF Equality+LinearArith(24,uc),
QF Equality+NonLinearArith(⊤), QF LinearIntArith(24,inc,uc),
QF LinearRealArith(;,‖,24,uc)

Winner of the Logics (where it did not win the corresponding division)
QF ALIA(⊥), QF AUFBV(24), QF AUFBVLIA(inc),
QF AUFLIA(;,‖,⊤,⊥), QF LIRA(;,‖,⊤,⊥,mv), QF RDL(⊤,⊥,mv),
QF UFBVLIA(inc), QF UFLIA(⊥,inc), QF UFLRA(;,‖,⊤,⊥,inc,mv),
QF UFNRA(;,‖,⊥,24,inc,mv)

41

YicesQS

Winner of the Division
Arith(⊤,24)

Winner of the Logics (where it did not win the corresponding division)
LRA(;,‖,⊥), NRA(;,‖,⊥)

42

Z3-Z3++

Overall Winner
Biggest Lead(mv), Largest Contribution(mv)

Winner of the Divisions
QF LinearIntArith(;,‖,⊤,mv), QF NonLinearIntArith(;,‖,⊤,⊥,24,mv),
QF NonLinearRealArith(;,‖,⊤,mv)

Winner of the Logic (where it did not win the corresponding division)
QF IDL(⊥)

43

z3-alpha

Winner of the Division
QF Strings(24)

Winner of the Logics (where it did not win the corresponding division)
QF S(⊤), QF SNIA(;,‖,⊤)

44

Checking Disagreements

50411 benchmarks of 227 938 have no status

300 benchmarks with disagreements (ABV, BV, LIA, NIA, QF ABV, QF AUFBV,
QF BVFP, QF FP, QF NRA, QF SLIA, UF, UFDT, UFDTLIRA)

We manually resolved the disagreements: authors confirmed solver unsoundness

We had 10 solvers with soundness issues:

Bitwuzla (uc printing error)

iProver (& Fixed)

OSTRICH

Q3B

UltimateEliminator+MathSAT

UltimateIntBlastingWrapper+SMTInterpol

Vampire

Yices2 (& Fixed)

Z3-Noodler (& Fixed)

Z3-Owl (& Fixed)

45

Plans for SMT-COMP 2023

”Revelations are found in clouds” — Serge King

MV: Algebraic number =⇒ non experimental

(root-of-with-ordering (coeffs p_0 p_1 ... p_n) i)

(root-of-with-interval (coeffs p_0 p_1 ... p_n) min max)

(root-of-with-enclosure (coeffs p_0 p_1 ... p_n) min max)

Thanks for the solvers that implemented one of them!

MV: partial function more discussion needed

MV: array theory more discussion needed

46

Plans for SMT-COMP 2023?

Proof validation track

Hopefully proof exhibition this year will help

We have to analyze the data still

Job only finished last week (took 18 days to run)
830gb

47

SMT-COMP organizing committee

Three people organize the SMT-COMP. In 2023:

Martin Bromberger

Jochen Hoenicke

François Bobot

Jochen have been organizer for four-years! He can rest happy.

We need a successor for next year’s competition. Contact us if you would like to
volunteer!

48

Acknowledgements

Andrea Micheli: pysmt

Guillaume Bury, FB.: Model Validator

Clark Barrett, Pascal Fontaine, Aina Niemetz, Mathias Preiner, Hans-Jörg Schurr:
SMT-LIB benchmarks

Aaron Stump: StarExec support

Mike Whalen and team: Cloud/Parallel Track

49

Benchmark contributors
In 2023 new benchmarks were contributed by:

Alex Coffin

Alex Ozdemir

Ali Uncu, James Davenport and Matthew England

Bohan Li

Elizabeth Polgreen

Fuqi Jia

Johann-Tobias Aaron and Raphael Schäg

Matthew England and Miguel Del Rio Almajano

Nicolas Amat

Yannick Moy

Yoni Zohar

50

Thanks

to all participants

and to you for listening

51

Thanks

to all participants

and to you for listening

51

	Solver Presentation

