Application of SMT in a Meta-Compiler:
A Logic DSL for Specitying Type Systems

Romain Beguet, Raphaél Amiard

SMT 2023 Workshop

Some context first..

Langkit: Basics

Language description language (a la JetBrains MPS, Spoofax, Eclipse Xtext)

State of the art in terms of expressing type-system complexity

Designed for Ada (main use case is Libadalang, an Ada language front-end)

Libadalang: Ada front-end used industrially in most of AdaCore’s Ada products (IDEs, style
checkers, static analyzers, etc)

https://github.com/AdaCore/libadalang

Langkit
grammar {
lexer { FnDef("fn" id
e NG (Param(id ":" id), ",") ")"
") "=" expr)
"\w+"
{"if", "then", "else", "fn"} IfExpr("if" expr "then" expr "else" expr)
{"c, ", """} OpExpr(expr expr)
@O0 - ISE - gl CallExpr(id "(" (Param(id), ",") ")™)
} ¥
class {
fun () : Equation =

self.if_expr.type_equation
self.then_expr.type_equation
self.if_expr. > self.then_expr.type_var

Libadalang: Semantic Analysis

e Adasupports function overloading on both arguments and return types

e Findingthe correct declarations is a complex and non local process
o Requires looking at the whole expression

procedure Test is
function A return Boolean is (True);
function A return Integer is (1);
procedure B (X : Float) is null;
procedure B (X : Integer) is null;
begin
B (A);
end Test;

Libadalang: Example

procedure Test is
function A return Boolean is (True);
function A return Integer is (1);
procedure B (X : Float) is null;
procedure B (X : Integer) is null;
begin
B (A);
end Test;

And(
Or(A.; « <A test.adb:2>, A _ — <A test.adb:3>),
Or(B.; — <B test.adb:4>, B —~ <B test.adb:5>),

— arg_type(B,),

actual_type r-e‘t—type(Aref)'
matching_type(A

expected_type

actual_type’ expected_type)

ref

ref

> > W >

expected_type
actual_type

<A test.adb:3>
<B test.adb:5>
<Integer>
<Integer>

Naive Solver(s)

e Several iterations of naive solvers
e Lastone: Expand disjunctions & prune early

e Order-dependent:
o Equations are hard to write and easy to break
o Kind of defeats the declarative, “modeling” aspect of our logic DSL

e Tooslow for some problems

SMT-based solver for Langkit

SAT *+ Lazy encoding of theory

e Encode the high-level relation in a boolean formula, abstracting away atoms

And(Abstract And(Encode

Or(x~Int, x-Bool), Or(a, b), (a | b)
Or(y-Bool, y-Int), f------ >| Or(c, d, }------ » & (c | d)
Or (x~Bool, y-Bool) Or(e, 1) & (e |)
))

Langkit’s Logic DSL Abstracted atoms Propositional Logic

SAT *+ Lazy encoding of theory

e Encode the high-level relation in a boolean formula, abstracting away atoms
e Ask SAT solver for a model, run the theory solver on it
e |f wefind acontradiction, integrate it back in the original problem and repeat

And(

Or(x~Int, x-Bool),
Or(y-Bool, y-Int),
Or (x~Bool, y-Bool)
)

contradictions: [
[x~Int, x-Bool]
1

Abstract

Langkit’s Logic DSL

And(
Or(a, b),
Or(c, d),
Or(e, 1)

)

contradictions:
[a, el

]

[

Encode

Abstracted atoms

(a | b)
& (c | d)
& (e | 1)
& ('a | le)

Propositional Logic

Ordered Disjunctions

e Inpropositional logic,“(A | B) & ..”can be satisfied if at least one of A, B is satisfied
e Inourlogic,“And(0Or (A, B), ..)"means:trywith A first, and if it fails then try with B

e Allows conveying “preference’, e.g. :
o Insome languages like Ada or Scala, more local entities are preferred to more global ones

Ordered Disjunctions

e Intheliterature, solversiteratively refine the model until it maximizes global satisfaction according
to a given metric
e For our particular case, we can avoid the concept of global satisfaction

Ordered Disjunctions

Consider:

And(
Or(x~Int, y-Bool),
Or(y-Int, x-Bool)
)

Ordered Disjunctions

e Consider: And(

Or(x—Int, y-Bool),
Or(y-Int, x Bool)
)

e Solutions:

a) {x-Int, y-Int}
b) {x-Bool, y-Bool}
e Solutionaisclearly preferred to solution b

Ordered Disjunctions

Consider:

And(

Or(x~Int, y-Int),
Or (x~Bool, y-Bool)
)

Ordered Disjunctions

e Consider: And(

Or(x—Int, vy-Int),
Or (x-Bool, y-Bool)
)

e Solutions:

a) {x-Int, y-Bool}
b) {y-Int, x-Bool}

e None of themis better than the other, because:
a) Xx<Int(froma)ispreferredtoy-Int (fromb)
b) x-Bool (fromb)is preferred toy-Bool (froma)
e Wesay that the problem is ambiguous
a) e.g.multiple overloads work for a given function call

Ordered Disjunctions

e Thanks to this restriction, we can compute an optimal model using only a SAT solver:
a. Foragivenordered disjunction, encode the fact that only one branch can be selected at the same time
b. Make sure variables corresponding to left branches are decided first

e See proofin paper!

Exactly-One Constraints

e Encoding“Or(A, B, C)”inpropositional logic:

At least one of A, B, C should be inthe model:“A v B v C”

If Aisin the model, B and C shouldn’'t: ‘A = -B & -C”

if Bisin the model, A and C shouldn’t:“B = -A & -(C"

if Cisinthe model, A and B shouldn’t: “C = -B & -C”

e This corresponds to a pairwise encoding of an Exactly-One (or one-hot) constraints, which

enforces the fact that only one branch can be selected at once

O O O O

Exactly-One Constraints

e Original transformation:

And(
b
Or(x~Int, x-Bool), Encode & E‘z I d;
Or(y-Bool, y-Int), & (e |
Or (x-Bool, y-Bool)
)

e Produces models in which atoms from the left and the right branch might appear
o E.g.f{ab,cd,e,f}isavalid model

Exactly-One Constraints

e New transformation:

And(

al| b) & (!a 'b
Or(x-~Int, x-Bool), Encode & EC I d; & E'C I !d;
Or(y-Bool, y-Int), & (e | f) & (le | !'f)
Or (x~Bool, y-Bool)
)

e Produces models in which either atoms from the left or from the right appear, but not both!
o f{ace}liacfl{adel}{adf}{b,cel}{b,cf}{bde}{bdf}

e However, we still have a problem with the order
o E.g.either{a,c,e}or{b,c, e} might be found by the solver depending on its branching algorithm

Theory-Driven Decisions

e Extend SAT interface to allow the theory to have a word on variable decisions
o When DPLL needs to branch, it asks the theory which literals it can make its choice on
e Inour case: pick unassigned variables of left-most branches of ordered disjunctions

And(DPLL Solver {c.d, e f}

Or(a, b), e model: {a, !b}

Or(C, d), 7y v

0 , f

) rie,) Theory of Ordered
{c,e} Disjunctions

e This produces a sequence of models in which atoms from the left branches are tried first!

The Big Picture

And(
Or(x~Int, x-Bool),
Or(y-Bool, y-Int),
Or(x~Bool, y-Bool)
)

The Big Picture

And(
Or(x~Int, x-Bool),
Or(y-Bool, y-Int), —
Or(x~Bool, y-Bool)
)

Encode

The Big Picture

And(

Or(x~Int, x-Bool),
Or(y-Bool, y-Int), -
Or(x~Bool, y-Bool)
)

Encode

The Big Picture

And(Decode
Or(x~Int, x-Bool), a, ¢, e > Xx~Int, y-Bool, x-Bool
Or(y-Bool, y-Int), — 7y
Or(x~Bool, y-Bool)
) Solve
Encode (a | b) & (!'a | 'b)
L & (c| d) & (lc | !d)
& (e |) & (le | If)

The Big Picture

And(Decode
Or(x_Int, x.Bool), a, c, e > Xx~Int, y-Bool, x-Bool
Or(y-Bool, y-Int), — 7y
Or(x~Bool, y-Bool)
) Solve Evaluate

Encode (a | b) & (la | !b) 1. start = [x: -, y: -]

& (c | d) & (lc | 'd) 2. x-Int = [x: Int, y: -]
1 & (e | f) & (le | If) 3. y-Bool = [x: Int, y: Bool]
4. x-Bool = FAIL

The Big Picture

And(Decode
Or(x_Int, x.Bool), a, c, e > Xx~Int, y-Bool, x-Bool
Or(y-Bool, y-Int), — 7y
Or(x~Bool, y-Bool)
) Solve Evaluate

Encode (a | b) & (la | !b) 1. start = [x: -, y: -]

N & (c | d) & (lc | 'd) 2. x-Int = [x: Int, y: -]
& (e |) & (le | If) 3. y-Bool = [x: Int, y: Bool]
4. x—Bool = FAIL

Explain

x~Int, x-Bool

The Big Picture

And(Decode
Or(x_Int, x.Bool), a, c, e > Xx~Int, y-Bool, x-Bool
Or(y-Bool, y-Int), — 7y
Or(x~Bool, y-Bool)
) Solve Evaluate

Encode (a | b) & (la | !b) 1. start = [x: -, y: -]

N & (c | d) & (lc | 'd) 2. x-Int = [x: Int, y: -]
& (e |) & (le | If) 3. y-Bool = [x: Int, y: Bool]
4, X—Bool = FAIL

Explain

a, e < x~Int, x-Bool

The Big Picture

And(a, c, e Decode > X-Int B
Or(x-Int, x-Bool), Gy > - , y-Bool, x-Bool
Or(y-Bool, y-Int), — I
Or (x~Bool, y-Bool)
) Solve Evaluate
Encode (a | b) & ('a | 'b) 1. start = [x: -, y: -]
N & (c | d) & (lc | !d) 2. x-Int = [x: Int, y: -]
& (e | f) & (le | If) 3. y-Bool = [x: Int, y: Bool]
& (la | le) 4. x-Bool = FAIL
Learn Explain
y

a, e < x~Int, x-Bool

The Big Picture

Agggtht’ %.Bool), b, c, e Decode > Xx—Bool, y-Bool, x-Bool
Or(y-Bool, y-Int), — 7y
Or(x~Bool, y-Bool)
) Solve Evaluate
Encode (a | b) & (la | !b) 1 start = [x: -, y: -]
N & (c | d) & (lc | 'd) 2 Xx-Bool = [x: Bool, y: -]
& (e |) & (le | ') 3 y-Bool = [x: Bool, y: Bool]
& (la | le) 4 x—Bool = SUCCESS

AdaSAT

Implementation of a SAT solver in Ada
o Conflict Driven Clause Learning (CDCL)
o Two-watched literals
o Blocking literals
@)

Low overhead in both directions (memory layout, exceptions)

Fastest possible on trivial cases (because most cases solved will be trivial)
Theory-driven variable decisions

Optimized handling of AMO constraints

AdaSAT: Optimized AMO Constraints

Pairwise encoding requires quadratic number of clauses

Or(a, b,)

Encode

Y

(a | b| c) & (la |

b) & (la |

lc) & (!b |

Ic)

Tried other encodings (bitwise encoding requires log, extra vars & linear extra clauses)

AdaSAT: Optimized AMO Constraints

Make sure indices for branches of a given disjunction are contiguous
Represent an AMO constraint of variablesinrangea .. busingaspecial clause shape

Or(a, b,)

Encode

Y

(a | b | c) & (AMO, a, ©)

In unit propagation, as soon as any literalina .. bissetto True, set every other to False
In conflict resolution, simulate a pairwise encoding (but never synthesize binary clauses)

Results

Performance

+ Naive = DPPL(T) - O(x8) - O(x?)

1E+9

1E+7 o

@
1E+5 ©

1E+3 —¢

Number of atoms evaluated

5 10 15 20 25 30

N

Number of atoms evaluated when varying number of overloads &
number of callsto F

procedure Te
type
type
type
function
function
function

function
function

function

procedure P (X
procedure P (X
procedure P (X

X
begin

P (F (F
end Test

st
is
is
is
F
F
F

F
F

F

F

is

null record
null record
null record

X return

X return

X return

X return

X return

X return
is null
is null
is null

X

is
is
is
is
is

is

null
null
null

null
null

null

Speedup

Impact resolving all names & types
over several codebases.

This is total run-time speedup
(including parsing & scope
construction). Real solver speedup
is marginally higher.

1045%

10 +
8 +
6.
406%
T 312%
275%
231%
188%
. 174%
: 148% 100%
106%107%, 10,109% . 117%108% I
1 | == s—m R . — - =
S o~ » o
e?‘ O\y ""Q? $& \82% \)6\0 '\Q'+ ’b(\Q’ 00\6 QQQ/ C’)@Q ’@’» '@’q/ \,Q:b & \,06) x&
?/S c,o4 eé $'®+ é 4@6 \‘Sl_ QQQ’ Q&\ Q\\ Q\\ Q\\ Q\\ Q\\
S TN VIS

Diagnostics

Before:

procedure Test is
X : Integer;

function Foo (X : Integer) return Integer is (0);

function Foo (X : Float)
begin

X := Foo (True);
end Test;

return Integer is (0);

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>

Resolution failed for node <AssignStmt test.adb:7:4-7:20>

Diagnostics

e Realization: explanations produced by the theory look exactly like what we want to report
o They only keep the relevant information out of a failure
o Since that same explanation is used for the solver, we know we will never have duplicate diagnostics
e Allow attaching error message templates to atoms
@predicate_error("expected $expected_type, got $self")
fun subtype(self, expected_type: BaseTypeDecl) - bool = ..
e Allow attaching context to atoms
e Still work-in-progress

Diagnostics Generation

Decode
And(a, c > x-Int, subtype?(x, Bool)
Or(x<Int, x~Float), I
subtype?(x, Bool)
) Evaluate
Solve
Encode 1. start = [x: -]
(a | b) & (la | 'b) & 2. x~Int = [x: Int]
Y 3. subtype?(x, Bool) = FAIL
Learn
a, c Explain

x-Int, subtype?(x, Bool)

expected Int,

A

got Bool

Emit

Diagnostics

After:

procedure Test is
X : Integer;

function Foo (X : Integer) return Integer is (0);
function Foo (X : Float) return Integer is (0);
begin
X := Foo (True);
end Test;

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>
kkhkkkkkkhkkhkkkhkkhkkhkkkhkkhkkhkkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkk*

test.adb:7:9: error: no matching alternative (of 2 candidates)
7 | X := Foo (True);
| AAN

test.adb:5:22: info: expected Float, got Boolean

5 function Foo (X : Float) return Integer is (0);
| ANAAN

test.adb:4:22: info: expected Integer, got Boolean

4 | function Foo (X : Integer) return Integer is (0);
| ANANAANAN

Future work

e Tryplugging existing SAT solvers!
o Maybe CaDiCal via IPASIR-UP?
e Encode some properties of our logic more eagerly
o E.g.it might be possible to encode atom dependencies directly
e Investigate cost/benefit of implementing fine grained theory propagation
e Express other type systems with different paradigms

o Structural subtyping
o Advanced type inference
(@)

Questions?

