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Some context first…



● Language description language (a la JetBrains MPS, Spoofax, Eclipse Xtext)

● State of the art in terms of expressing type-system complexity
● Designed for Ada (main use case is Libadalang, an Ada language front-end)

● Libadalang: Ada front-end used industrially in most of AdaCore’s Ada products (IDEs, style 

checkers, static analyzers, etc)

Langkit: Basics

https://github.com/AdaCore/libadalang


Langkit
lexer test_lexer {    
    par_open <- "("    
    par_close <- ")"    
    id <- "\w+"    
    keywords <- {"if", "then", "else", "fn"}    
    separators <- {"(", ")", ":"}    
    operators <- {"+", "-", "*", "="}    
}

grammar test_grammar {    
  fn_def <-
  FnDef("fn" id
        "(" list*(Param(id ":" id), ",") ")"
        "=" expr)    
  expr <-     
  IfExpr("if" expr "then" expr "else" expr)    
  | OpExpr(expr @operator expr)    
  | CallExpr(id "(" list+(Param(id), ",") ")")    
}

        

class IfExpr {    
    fun type_equation() : Equation =    
        self.if_expr.type_equation    
        and self.then_expr.type_equation    
        and self.if_expr.type_var <-> self.then_expr.type_var    
}



Libadalang: Semantic Analysis

● Ada supports function overloading on both arguments and return types

● Finding the correct declarations is a complex and non local process
○ Requires looking at the whole expression

procedure Test is
   function A return Boolean is (True);
   function A return Integer is (1);
   procedure B (X : Float) is null;
   procedure B (X : Integer) is null;
begin
   B (A);
end Test;



Libadalang: Example

procedure Test is
   function A return Boolean is (True);
   function A return Integer is (1);
   procedure B (X : Float) is null;
   procedure B (X : Integer) is null;
begin
   B (A);
end Test;

And(
    Or(Aref ← <A test.adb:2>, Aref ← <A test.adb:3>),
    Or(Bref ← <B test.adb:4>, Bref ← <B test.adb:5>),
    Aexpected_type ← arg_type(Bref),
    Aactual_type  ← ret_type(Aref),
    matching_type(Aactual_type, Aexpected_type)
)

Aref       = <A test.adb:3>
Bref       = <B test.adb:5>
Aexpected_type = <Integer>
Aactual_type   = <Integer>



Naive Solver(s)

● Several iterations of naive solvers

● Last one: Expand disjunctions & prune early

● Order-dependent:
○ Equations are hard to write and easy to break

○ Kind of defeats the declarative, “modeling” aspect of our logic DSL

● Too slow for some problems



SMT-based solver for Langkit



● Encode the high-level relation in a boolean formula, abstracting away atoms

SAT + Lazy encoding of theory

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

And(
   Or(a, b),
   Or(c, d),
   Or(e, f)
)

    (a | b)
 &  (c | d)
 &  (e | f)

Abstract Encode

Langkit’s Logic DSL Propositional LogicAbstracted atoms



● Encode the high-level relation in a boolean formula, abstracting away atoms

● Ask SAT solver for a model, run the theory solver on it

● If we find a contradiction, integrate it back in the original problem and repeat

SAT + Lazy encoding of theory

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

contradictions: [
  [x←Int, x←Bool]
]

And(
   Or(a, b),
   Or(c, d),
   Or(e, f)
)

contradictions: [
  [a, e]
]

    (a | b)
 &  (c | d)
 &  (e | f)
 &  (!a | !e)

Abstract Encode

Langkit’s Logic DSL Propositional LogicAbstracted atoms



Ordered Disjunctions

● In propositional logic, “(A | B) & …” can be satisfied if at least one of A, B is satisfied

● In our logic, “And(Or(A, B), …)” means: try with A first, and if it fails then try with B

● Allows conveying “preference”, e.g. :
○ In some languages like Ada or Scala, more local entities are preferred to more global ones



Ordered Disjunctions

● In the literature, solvers iteratively refine the model until it maximizes global satisfaction according 

to a given metric

● For our particular case, we can avoid the concept of global satisfaction



Ordered Disjunctions

● Consider: And(
 Or(x←Int, y←Bool),
 Or(y←Int, x←Bool)
)



Ordered Disjunctions

● Consider:

● Solutions: 
a) {x←Int,  y←Int}
b) {x←Bool, y←Bool}

● Solution a is clearly preferred to solution b

And(
 Or(x←Int, y←Bool),
 Or(y←Int, x←Bool)
)



Ordered Disjunctions

● Consider: And(
 Or(x←Int,  y←Int),
 Or(x←Bool, y←Bool)
)



Ordered Disjunctions

● Consider:

● Solutions: 
a) {x←Int, y←Bool}
b) {y←Int, x←Bool}

● None of them is better than the other, because:
a) x←Int (from a) is preferred to y←Int (from b)

b) x←Bool (from b) is preferred to y←Bool (from a)

● We say that the problem is ambiguous 
a) e.g. multiple overloads work for a given function call

And(
 Or(x←Int,  y←Int),
 Or(x←Bool, y←Bool)
)



Ordered Disjunctions

● Thanks to this restriction, we can compute an optimal model using only a SAT solver:
a. For a given ordered disjunction, encode the fact that only one branch can be selected at the same time

b. Make sure variables corresponding to left branches are decided first

● See proof in paper!



Exactly-One Constraints

● Encoding “Or(A, B, C)” in propositional logic:
○ At least one of A, B, C should be in the model: “A v B v C”

○ If A is in the model, B and C shouldn’t: “A ⇒ ¬B & ¬C”

○ if B is in the model, A and C shouldn’t: “B ⇒ ¬A & ¬C”

○ if C is in the model, A and B shouldn’t: “C ⇒ ¬B & ¬C”

● This corresponds to a pairwise encoding of an Exactly-One (or one-hot) constraints, which 

enforces the fact that only one branch can be selected at once



● Produces models in which atoms from the left and the right branch might appear
○ E.g. {a, b, c, d, e, f} is a valid model

Exactly-One Constraints

● Original transformation:

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

    (a | b)
 &  (c | d)
 &  (e | f)



● New transformation:

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

Exactly-One Constraints

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

● Produces models in which either atoms from the left or from the right appear, but not both!
○ {a, c, e}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}

● However, we still have a problem with the order
○ E.g. either {a, c, e} or {b, c, e} might be found by the solver depending on its branching algorithm



● Extend SAT interface to allow the theory to have a word on variable decisions
○ When DPLL needs to branch, it asks the theory which literals it can make its choice on

● In our case: pick unassigned variables of left-most branches of ordered disjunctions

● This produces a sequence of models in which atoms from the left branches are tried first!

Theory-Driven Decisions

And(
 Or(a, b),
 Or(c, d),
 Or(e, f)
)

DPLL Solver
● model: {a, !b}

Theory of Ordered 
Disjunctions

{c, d, e, f}

{c, e}



The Big Picture
And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

a, c, e

Solve

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

x←Int, y←Bool, x←Boola, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

1. start  ⇒ [x: -, y: -]
2. x←Int  ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Boola, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

1. start  ⇒ [x: -, y: -]
2. x←Int  ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)

1. start  ⇒ [x: -, y: -]
2. x←Int  ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

a, e

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)
 &  (!a | !e)

1. start  ⇒ [x: -, y: -]
2. x←Int  ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

a, e

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

Learn



The Big Picture

    (a | b) & (!a | !b)
 &  (c | d) & (!c | !d)
 &  (e | f) & (!e | !f)
 &  (!a | !e)

1. start ⇒ [x: -, y: -]
2. x←Bool ⇒ [x: Bool, y: -]
3. y←Bool ⇒ [x: Bool, y: Bool]
4. x←Bool ⇒ SUCCESS

Evaluate

x←Bool, y←Bool, x←Boolb, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)



● Implementation of a SAT solver in Ada
○ Conflict Driven Clause Learning (CDCL)
○ Two-watched literals
○ Blocking literals
○ …

● Low overhead in both directions (memory layout, exceptions)
● Fastest possible on trivial cases (because most cases solved will be trivial)
● Theory-driven variable decisions
● Optimized handling of AMO constraints

AdaSAT



● Pairwise encoding requires quadratic number of clauses

AdaSAT: Optimized AMO Constraints

Or(a, b, c)   (a | b | c) & (!a | !b) & (!a | !c) & (!b | !c)
Encode

● Tried other encodings (bitwise encoding requires log
2

 extra vars & linear extra clauses)



● Make sure indices for branches of a given disjunction are contiguous

● Represent an AMO constraint of variables in range a .. b using a special clause shape

● In unit propagation, as soon as any literal in a .. b is set to True, set every other to False

● In conflict resolution, simulate a pairwise encoding (but never synthesize binary clauses)

AdaSAT: Optimized AMO Constraints

Or(a, b, c)   (a | b | c) & (AMO, a, c)
Encode



Results



Performance
procedure Test is
    type T1 is null record;
    type T2 is null record;
    type T3 is null record;
  
    function F (X : T1) return T1 is (null record);
    function F (X : T1) return T2 is (null record);
    function F (X : T1) return T3 is (null record);
  
    function F (X : T2) return T2 is (null record);
    function F (X : T2) return T3 is (null record);
  
    function F (X : T3) return T3 is (null record);
  
    procedure P (X : T1) is null;
    procedure P (X : T2) is null;
    procedure P (X : T3) is null;
  
    X : T1;
  begin
    P (F (F (F (X))));
  end Test;

Number of atoms evaluated when varying number of overloads & 
number of calls to F



Speedup

Impact resolving all names & types 
over several codebases.

This is total run-time speedup 
(including parsing & scope 
construction). Real solver speedup 
is marginally higher.



Before:

Diagnostics

procedure Test is
   X : Integer;

   function Foo (X : Integer) return Integer is (0);
   function Foo (X : Float)   return Integer is (0);
begin
   X := Foo (True); 
end Test; 

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>
*******************************************************

Resolution failed for node <AssignStmt test.adb:7:4-7:20>



Diagnostics

● Realization: explanations produced by the theory look exactly like what we want to report
○ They only keep the relevant information out of a failure

○ Since that same explanation is used for the solver, we know we will never have duplicate diagnostics

● Allow attaching error message templates to atoms

● Allow attaching context to atoms

● Still work-in-progress

@predicate_error("expected $expected_type, got $self")
fun subtype(self, expected_type: BaseTypeDecl) → bool = …



Diagnostics Generation

(a | b) & (!a | !b) &  c
1. start             ⇒ [x: -]
2. x←Int            ⇒ [x: Int]
3. subtype?(x, Bool) ⇒ FAIL

Evaluate

x←Int, subtype?(x, Bool)

x←Int, subtype?(x, Bool)

Explain

a, c

Solve

Decode

a, c

Encode

And(
 Or(x←Int, x←Float),
 subtype?(x, Bool)
)

Learn

expected Int, 
got Bool

Emit



After:

Diagnostics

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>
*******************************************************

test.adb:7:9: error: no matching alternative (of 2 candidates)
7 |     X := Foo (True);
  |          ^^^

test.adb:5:22: info: expected Float, got Boolean
5 | function Foo (X : Float) return Integer is (0);
  |                     ^^^^^

test.adb:4:22: info: expected Integer, got Boolean
4 | function Foo (X : Integer) return Integer is (0);
  |                     ^^^^^^^

procedure Test is
   X : Integer;

   function Foo (X : Integer) return Integer is (0);
   function Foo (X : Float)   return Integer is (0);
begin
   X := Foo (True); 
end Test; 



Future work

● Try plugging existing SAT solvers!
○ Maybe CaDiCaL via IPASIR-UP ?

● Encode some properties of our logic more eagerly
○ E.g. it might be possible to encode atom dependencies directly

● Investigate cost/benefit of implementing fine grained theory propagation

● Express other type systems with different paradigms
○ Structural subtyping

○ Advanced type inference

○ …



Questions?


