
Application of SMT in a Meta-Compiler:
A Logic DSL for Specifying Type Systems

Romain Beguet, Raphaël Amiard

SMT 2023 Workshop

Some context first…

● Language description language (a la JetBrains MPS, Spoofax, Eclipse Xtext)

● State of the art in terms of expressing type-system complexity
● Designed for Ada (main use case is Libadalang, an Ada language front-end)

● Libadalang: Ada front-end used industrially in most of AdaCore’s Ada products (IDEs, style

checkers, static analyzers, etc)

Langkit: Basics

https://github.com/AdaCore/libadalang

Langkit
lexer test_lexer {
 par_open <- "("
 par_close <- ")"
 id <- "\w+"
 keywords <- {"if", "then", "else", "fn"}
 separators <- {"(", ")", ":"}
 operators <- {"+", "-", "*", "="}
}

grammar test_grammar {
 fn_def <-
 FnDef("fn" id
 "(" list*(Param(id ":" id), ",") ")"
 "=" expr)
 expr <-
 IfExpr("if" expr "then" expr "else" expr)
 | OpExpr(expr @operator expr)
 | CallExpr(id "(" list+(Param(id), ",") ")")
}

class IfExpr {
 fun type_equation() : Equation =
 self.if_expr.type_equation
 and self.then_expr.type_equation
 and self.if_expr.type_var <-> self.then_expr.type_var
}

Libadalang: Semantic Analysis

● Ada supports function overloading on both arguments and return types

● Finding the correct declarations is a complex and non local process
○ Requires looking at the whole expression

procedure Test is
 function A return Boolean is (True);
 function A return Integer is (1);
 procedure B (X : Float) is null;
 procedure B (X : Integer) is null;
begin
 B (A);
end Test;

Libadalang: Example

procedure Test is
 function A return Boolean is (True);
 function A return Integer is (1);
 procedure B (X : Float) is null;
 procedure B (X : Integer) is null;
begin
 B (A);
end Test;

And(
 Or(Aref ← <A test.adb:2>, Aref ← <A test.adb:3>),
 Or(Bref ← <B test.adb:4>, Bref ← <B test.adb:5>),
 Aexpected_type ← arg_type(Bref),
 Aactual_type ← ret_type(Aref),
 matching_type(Aactual_type, Aexpected_type)
)

Aref = <A test.adb:3>
Bref = <B test.adb:5>
Aexpected_type = <Integer>
Aactual_type = <Integer>

Naive Solver(s)

● Several iterations of naive solvers

● Last one: Expand disjunctions & prune early

● Order-dependent:
○ Equations are hard to write and easy to break

○ Kind of defeats the declarative, “modeling” aspect of our logic DSL

● Too slow for some problems

SMT-based solver for Langkit

● Encode the high-level relation in a boolean formula, abstracting away atoms

SAT + Lazy encoding of theory

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

And(
 Or(a, b),
 Or(c, d),
 Or(e, f)
)

 (a | b)
 & (c | d)
 & (e | f)

Abstract Encode

Langkit’s Logic DSL Propositional LogicAbstracted atoms

● Encode the high-level relation in a boolean formula, abstracting away atoms

● Ask SAT solver for a model, run the theory solver on it

● If we find a contradiction, integrate it back in the original problem and repeat

SAT + Lazy encoding of theory

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

contradictions: [
 [x←Int, x←Bool]
]

And(
 Or(a, b),
 Or(c, d),
 Or(e, f)
)

contradictions: [
 [a, e]
]

 (a | b)
 & (c | d)
 & (e | f)
 & (!a | !e)

Abstract Encode

Langkit’s Logic DSL Propositional LogicAbstracted atoms

Ordered Disjunctions

● In propositional logic, “(A | B) & …” can be satisfied if at least one of A, B is satisfied

● In our logic, “And(Or(A, B), …)” means: try with A first, and if it fails then try with B

● Allows conveying “preference”, e.g. :
○ In some languages like Ada or Scala, more local entities are preferred to more global ones

Ordered Disjunctions

● In the literature, solvers iteratively refine the model until it maximizes global satisfaction according

to a given metric

● For our particular case, we can avoid the concept of global satisfaction

Ordered Disjunctions

● Consider: And(
 Or(x←Int, y←Bool),
 Or(y←Int, x←Bool)
)

Ordered Disjunctions

● Consider:

● Solutions:
a) {x←Int, y←Int}
b) {x←Bool, y←Bool}

● Solution a is clearly preferred to solution b

And(
 Or(x←Int, y←Bool),
 Or(y←Int, x←Bool)
)

Ordered Disjunctions

● Consider: And(
 Or(x←Int, y←Int),
 Or(x←Bool, y←Bool)
)

Ordered Disjunctions

● Consider:

● Solutions:
a) {x←Int, y←Bool}
b) {y←Int, x←Bool}

● None of them is better than the other, because:
a) x←Int (from a) is preferred to y←Int (from b)

b) x←Bool (from b) is preferred to y←Bool (from a)

● We say that the problem is ambiguous
a) e.g. multiple overloads work for a given function call

And(
 Or(x←Int, y←Int),
 Or(x←Bool, y←Bool)
)

Ordered Disjunctions

● Thanks to this restriction, we can compute an optimal model using only a SAT solver:
a. For a given ordered disjunction, encode the fact that only one branch can be selected at the same time

b. Make sure variables corresponding to left branches are decided first

● See proof in paper!

Exactly-One Constraints

● Encoding “Or(A, B, C)” in propositional logic:
○ At least one of A, B, C should be in the model: “A v B v C”

○ If A is in the model, B and C shouldn’t: “A ⇒ ¬B & ¬C”

○ if B is in the model, A and C shouldn’t: “B ⇒ ¬A & ¬C”

○ if C is in the model, A and B shouldn’t: “C ⇒ ¬B & ¬C”

● This corresponds to a pairwise encoding of an Exactly-One (or one-hot) constraints, which

enforces the fact that only one branch can be selected at once

● Produces models in which atoms from the left and the right branch might appear
○ E.g. {a, b, c, d, e, f} is a valid model

Exactly-One Constraints

● Original transformation:

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

 (a | b)
 & (c | d)
 & (e | f)

● New transformation:

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

Exactly-One Constraints

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

● Produces models in which either atoms from the left or from the right appear, but not both!
○ {a, c, e}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}

● However, we still have a problem with the order
○ E.g. either {a, c, e} or {b, c, e} might be found by the solver depending on its branching algorithm

● Extend SAT interface to allow the theory to have a word on variable decisions
○ When DPLL needs to branch, it asks the theory which literals it can make its choice on

● In our case: pick unassigned variables of left-most branches of ordered disjunctions

● This produces a sequence of models in which atoms from the left branches are tried first!

Theory-Driven Decisions

And(
 Or(a, b),
 Or(c, d),
 Or(e, f)
)

DPLL Solver
● model: {a, !b}

Theory of Ordered
Disjunctions

{c, d, e, f}

{c, e}

The Big Picture
And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

a, c, e

Solve

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

x←Int, y←Bool, x←Boola, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

1. start ⇒ [x: -, y: -]
2. x←Int ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Boola, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

1. start ⇒ [x: -, y: -]
2. x←Int ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)

1. start ⇒ [x: -, y: -]
2. x←Int ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

a, e

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)
 & (!a | !e)

1. start ⇒ [x: -, y: -]
2. x←Int ⇒ [x: Int, y: -]
3. y←Bool ⇒ [x: Int, y: Bool]
4. x←Bool ⇒ FAIL

Evaluate

x←Int, y←Bool, x←Bool

x←Int, x←Bool

Explain

a, c, e

Solve

Decode

a, e

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

Learn

The Big Picture

 (a | b) & (!a | !b)
 & (c | d) & (!c | !d)
 & (e | f) & (!e | !f)
 & (!a | !e)

1. start ⇒ [x: -, y: -]
2. x←Bool ⇒ [x: Bool, y: -]
3. y←Bool ⇒ [x: Bool, y: Bool]
4. x←Bool ⇒ SUCCESS

Evaluate

x←Bool, y←Bool, x←Boolb, c, e

Solve

Decode

Encode

And(
 Or(x←Int, x←Bool),
 Or(y←Bool, y←Int),
 Or(x←Bool, y←Bool)
)

● Implementation of a SAT solver in Ada
○ Conflict Driven Clause Learning (CDCL)
○ Two-watched literals
○ Blocking literals
○ …

● Low overhead in both directions (memory layout, exceptions)
● Fastest possible on trivial cases (because most cases solved will be trivial)
● Theory-driven variable decisions
● Optimized handling of AMO constraints

AdaSAT

● Pairwise encoding requires quadratic number of clauses

AdaSAT: Optimized AMO Constraints

Or(a, b, c) (a | b | c) & (!a | !b) & (!a | !c) & (!b | !c)
Encode

● Tried other encodings (bitwise encoding requires log
2

 extra vars & linear extra clauses)

● Make sure indices for branches of a given disjunction are contiguous

● Represent an AMO constraint of variables in range a .. b using a special clause shape

● In unit propagation, as soon as any literal in a .. b is set to True, set every other to False

● In conflict resolution, simulate a pairwise encoding (but never synthesize binary clauses)

AdaSAT: Optimized AMO Constraints

Or(a, b, c) (a | b | c) & (AMO, a, c)
Encode

Results

Performance
procedure Test is
 type T1 is null record;
 type T2 is null record;
 type T3 is null record;

 function F (X : T1) return T1 is (null record);
 function F (X : T1) return T2 is (null record);
 function F (X : T1) return T3 is (null record);

 function F (X : T2) return T2 is (null record);
 function F (X : T2) return T3 is (null record);

 function F (X : T3) return T3 is (null record);

 procedure P (X : T1) is null;
 procedure P (X : T2) is null;
 procedure P (X : T3) is null;

 X : T1;
 begin
 P (F (F (F (X))));
 end Test;

Number of atoms evaluated when varying number of overloads &
number of calls to F

Speedup

Impact resolving all names & types
over several codebases.

This is total run-time speedup
(including parsing & scope
construction). Real solver speedup
is marginally higher.

Before:

Diagnostics

procedure Test is
 X : Integer;

 function Foo (X : Integer) return Integer is (0);
 function Foo (X : Float) return Integer is (0);
begin
 X := Foo (True);
end Test;

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>

Resolution failed for node <AssignStmt test.adb:7:4-7:20>

Diagnostics

● Realization: explanations produced by the theory look exactly like what we want to report
○ They only keep the relevant information out of a failure

○ Since that same explanation is used for the solver, we know we will never have duplicate diagnostics

● Allow attaching error message templates to atoms

● Allow attaching context to atoms

● Still work-in-progress

@predicate_error("expected $expected_type, got $self")
fun subtype(self, expected_type: BaseTypeDecl) → bool = …

Diagnostics Generation

(a | b) & (!a | !b) & c
1. start ⇒ [x: -]
2. x←Int ⇒ [x: Int]
3. subtype?(x, Bool) ⇒ FAIL

Evaluate

x←Int, subtype?(x, Bool)

x←Int, subtype?(x, Bool)

Explain

a, c

Solve

Decode

a, c

Encode

And(
 Or(x←Int, x←Float),
 subtype?(x, Bool)
)

Learn

expected Int,
got Bool

Emit

After:

Diagnostics

Resolving xrefs for node <AssignStmt test.adb:7:4-7:20>

test.adb:7:9: error: no matching alternative (of 2 candidates)
7 | X := Foo (True);
 | ^^^

test.adb:5:22: info: expected Float, got Boolean
5 | function Foo (X : Float) return Integer is (0);
 | ^^^^^

test.adb:4:22: info: expected Integer, got Boolean
4 | function Foo (X : Integer) return Integer is (0);
 | ^^^^^^^

procedure Test is
 X : Integer;

 function Foo (X : Integer) return Integer is (0);
 function Foo (X : Float) return Integer is (0);
begin
 X := Foo (True);
end Test;

Future work

● Try plugging existing SAT solvers!
○ Maybe CaDiCaL via IPASIR-UP ?

● Encode some properties of our logic more eagerly
○ E.g. it might be possible to encode atom dependencies directly

● Investigate cost/benefit of implementing fine grained theory propagation

● Express other type systems with different paradigms
○ Structural subtyping

○ Advanced type inference

○ …

Questions?

