
Selecting Quantifiers for
Instantiation in SMT

Jan Jakubův1 Mikoláš Janota1

Bartosz Piotrowski1 Jelle Piepenbrock1

Andrew Reynolds2

1 Czech Technical University in Prague

2 University of Iowa

SMT 2023
Jan Jakubův et al Quantifier Bandits 1 / 1



ChatGPT Solves Everything?

Jan Jakubův et al Quantifier Bandits 2 / 1



Even Worse

Jan Jakubův et al Quantifier Bandits 3 / 1



But also...

Jan Jakubův et al Quantifier Bandits 4 / 1



ML and Solving

General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:

1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.

2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:

1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.

3 Profit!

Quantifiers are a good target for ML:

1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:

1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:

1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT

2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains

3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs.

On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



ML and Solving

General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently

Over multiple instances vs. On a single instance

If multiple instances train, on successful runs.

What to train on for a single instance?

Jan Jakubův et al Quantifier Bandits 5 / 1



Background: Herbrand

In FOL (∀xϕ) is unsatisfiable iff
there is unsatisfiable finite grounding
from the Herbrand universe

Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:

f (f (c)) ̸= c
∧ f (c) = c
∧ f (f (c)) = f (c)

Herbrand universe: {f i(c) | i ∈ N0}

Jan Jakubův et al Quantifier Bandits 6 / 1



Background: Herbrand

In FOL (∀xϕ) is unsatisfiable iff
there is unsatisfiable finite grounding
from the Herbrand universe
Example

f (f (c)) ̸= c
∧ (∀x)(f (x) = x)

Instantiation:

f (f (c)) ̸= c
∧ f (c) = c
∧ f (f (c)) = f (c)

Herbrand universe: {f i(c) | i ∈ N0}

Jan Jakubův et al Quantifier Bandits 6 / 1



Background: Herbrand

In FOL (∀xϕ) is unsatisfiable iff
there is unsatisfiable finite grounding
from the Herbrand universe
Example

f (f (c)) ̸= c
∧ (∀x)(f (x) = x)

Instantiation:

f (f (c)) ̸= c
∧ f (c) = c
∧ f (f (c)) = f (c)

Herbrand universe: {f i(c) | i ∈ N0}
Jan Jakubův et al Quantifier Bandits 6 / 1



Background: Herbrand++

Consider only ground terms in the formula:
(∀xϕ) ∧ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ], where t1 ∈ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ], where t2 ∈
(G ∧ ϕ[t1/x ])

(∀xϕ)∧G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ]∧ϕ[t3/x ], where
t3 ∈ (G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ])

Still infinite but finite in each step! [?, ?]

Jan Jakubův et al Quantifier Bandits 7 / 1



Background: Herbrand++

Consider only ground terms in the formula:
(∀xϕ) ∧ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ], where t1 ∈ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ], where t2 ∈
(G ∧ ϕ[t1/x ])

(∀xϕ)∧G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ]∧ϕ[t3/x ], where
t3 ∈ (G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ])

Still infinite but finite in each step! [?, ?]

Jan Jakubův et al Quantifier Bandits 7 / 1



Background: Herbrand++

Consider only ground terms in the formula:
(∀xϕ) ∧ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ], where t1 ∈ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ], where t2 ∈
(G ∧ ϕ[t1/x ])

(∀xϕ)∧G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ]∧ϕ[t3/x ], where
t3 ∈ (G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ])

Still infinite but finite in each step! [?, ?]

Jan Jakubův et al Quantifier Bandits 7 / 1



Background: Herbrand++

Consider only ground terms in the formula:
(∀xϕ) ∧ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ], where t1 ∈ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ], where t2 ∈
(G ∧ ϕ[t1/x ])

(∀xϕ)∧G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ]∧ϕ[t3/x ], where
t3 ∈ (G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ])

Still infinite but finite in each step! [?, ?]

Jan Jakubův et al Quantifier Bandits 7 / 1



Background: Herbrand++

Consider only ground terms in the formula:
(∀xϕ) ∧ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ], where t1 ∈ G

(∀xϕ) ∧ G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ], where t2 ∈
(G ∧ ϕ[t1/x ])

(∀xϕ)∧G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ]∧ϕ[t3/x ], where
t3 ∈ (G ∧ ϕ[t1/x ] ∧ ϕ[t2/x ])

Still infinite but finite in each step! [?, ?]

Jan Jakubův et al Quantifier Bandits 7 / 1



Onion Instantiation

G ∧ ∀x . ϕ

G

ϕ[x 7→ t1]

ϕ[x 7→ t2] G


t1

t2

. . .

ϕ[x 7→ t1]

{
. . .

ϕ[x 7→ t2]

{
. . .

. . .

Jan Jakubův et al Quantifier Bandits 8 / 1



Onion Instantiation

G ∧ ∀x . ϕ

G

ϕ[x 7→ t1]

ϕ[x 7→ t2]

G


t1

t2

. . .

ϕ[x 7→ t1]

{
. . .

ϕ[x 7→ t2]

{
. . .

. . .

Jan Jakubův et al Quantifier Bandits 8 / 1



Onion Instantiation

G ∧ ∀x . ϕ

G

ϕ[x 7→ t1]

ϕ[x 7→ t2] G


t1

t2

. . .

ϕ[x 7→ t1]

{
. . .

ϕ[x 7→ t2]

{
. . .

. . .

Jan Jakubův et al Quantifier Bandits 8 / 1



Motivation — SMT instantiation

Disprove in LIA:

Quantifier Instantiations

(∀x f (x) < f (x + 1))

0..99

∧ (∀x f (x) > f (x + 100))

0

∧ (∀x f (x) < 3x)

−

∧ (∀x g(x) < 3x)

−

Only some instantiations will be useful. (Typically
small portion)
but our “Herbrand pool” is growing regardless

Jan Jakubův et al Quantifier Bandits 9 / 1



Motivation — SMT instantiation

Disprove in LIA:

Quantifier Instantiations

(∀x f (x) < f (x + 1)) 0..99
∧ (∀x f (x) > f (x + 100)) 0
∧ (∀x f (x) < 3x) −
∧ (∀x g(x) < 3x) −

Only some instantiations will be useful. (Typically
small portion)
but our “Herbrand pool” is growing regardless

Jan Jakubův et al Quantifier Bandits 9 / 1



Multi-armed Bandit Problem (MAB)

Levers give rewards each time they’re pulled.

Rewards vary according to some distribution.

What is the best lever-pulling strategy to
accumulate most profit?

Jan Jakubův et al Quantifier Bandits 10 / 1



Multi-armed Bandit Problem (MAB)

Levers give rewards each time they’re pulled.

Rewards vary according to some distribution.

What is the best lever-pulling strategy to
accumulate most profit?

Jan Jakubův et al Quantifier Bandits 10 / 1



Multi-armed Bandit Problem (MAB)

Levers give rewards each time they’re pulled.

Rewards vary according to some distribution.

What is the best lever-pulling strategy to
accumulate most profit?

Jan Jakubův et al Quantifier Bandits 10 / 1



Exploitation versus Exploration

Should we focus on levers that gave most
reward in the past?

Should we explore new levers?

Jan Jakubův et al Quantifier Bandits 11 / 1



Exploitation versus Exploration

Should we focus on levers that gave most
reward in the past?

Should we explore new levers?

Jan Jakubův et al Quantifier Bandits 11 / 1



Upper Confidence Bound (UCB)

Quality Qt(q) of quantifier q at time step t:

Qt(q) = Rt(q) + c

√
log(t)

Nt(q)

Rt(q) mean reward for the quantifier q so far,

Nt(q) number of times q has been selected,

c is the confidence value controlling
exploitation vs. exploration

Jan Jakubův et al Quantifier Bandits 12 / 1



Rewards for Quantifiers

Activity: measure propagations in the SAT
solver caused by the quantifier’s instantiations

Difficulty: measure conflicts in the SAT solver
caused by the quantifier’s instantiations

Jan Jakubův et al Quantifier Bandits 13 / 1



Rewards for Quantifiers

Activity: measure propagations in the SAT
solver caused by the quantifier’s instantiations

Difficulty: measure conflicts in the SAT solver
caused by the quantifier’s instantiations

Jan Jakubův et al Quantifier Bandits 13 / 1



Implementation

Within cvc5’s enumerative instantiation [?, ?]

Reward as linear combination

α · nact+ β · ndiff

Chosen by training a linear regression model

α = 0.04, β = 0.1

Jan Jakubův et al Quantifier Bandits 14 / 1



Implementation

Within cvc5’s enumerative instantiation [?, ?]

Reward as linear combination

α · nact+ β · ndiff

Chosen by training a linear regression model

α = 0.04, β = 0.1

Jan Jakubův et al Quantifier Bandits 14 / 1



Implementation

Within cvc5’s enumerative instantiation [?, ?]

Reward as linear combination

α · nact+ β · ndiff

Chosen by training a linear regression model

α = 0.04, β = 0.1

Jan Jakubův et al Quantifier Bandits 14 / 1



Experiments — Random Selection

Jan Jakubův et al Quantifier Bandits 15 / 1



Experiments — ML Selection

Jan Jakubův et al Quantifier Bandits 16 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits
Issues:

▶ Over-simplifications in the paradigm:
state, interaction

▶ Good reward function?
“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits
Issues:

▶ Over-simplifications in the paradigm:
state, interaction

▶ Good reward function?
“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits

Issues:

▶ Over-simplifications in the paradigm:
state, interaction

▶ Good reward function?
“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits
Issues:

▶ Over-simplifications in the paradigm:
state, interaction

▶ Good reward function?
“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits
Issues:
▶ Over-simplifications in the paradigm:

state, interaction

▶ Good reward function?
“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1



Conclusion and Future Work

High-level: Can ML you help SMT?

Challenge:
Can we learn within a single instance?

Moderate results from multi-armed bandits
Issues:
▶ Over-simplifications in the paradigm:

state, interaction
▶ Good reward function?

“Did we get any closer to a proof?”

Jan Jakubův et al Quantifier Bandits 17 / 1


