Selecting Quantifiers for Instantiation in SMT

Jan Jakubův ${ }^{1}$ Mikoláš Janota ${ }^{1}$ Bartosz Piotrowski ${ }^{1}$ Jelle Piepenbrock ${ }^{1}$ Andrew Reynolds ${ }^{2}$

${ }^{1}$ Czech Technical University in Prague
${ }^{2}$ University of Iowa

SMT 2023

ChatGPT Solves Everything?

It is well known that there are infinitely many prime numbers, which was shown in Euclid's seminal work Elements. Can you modify Euclid's famous proof to prove the well known fact that in every 10 adjecent natural numbers at least one is prime?

Certainly! Let's modify Euclid's proof for the infinitude of primes to prove the statement that in every 10 adjacent natural numbers, there is at least one prime.

Suppose to the contrary that there exist 10 consecutive natural numbers that do not contain any primes. Let these numbers be denoted by $\$ \mathrm{n}+1 \$$, $\$ \mathrm{n}+2 \$$, ..., \$n+10\$.

Consider the numbers $\$ \mathrm{n}+1 \$, \$ \mathrm{n}+2 \$, \ldots, \$ \mathrm{n}+6 \$$. By assumption,

Even Worse

Ok thank you. So if I understand correctly, you're saying we can adapt Euclid's proof that in every 10 consecutive natural numbers there is at least one prime but we also know that there are consecutive prime numbers with a gap 70,000,000. Am I reading your responses correctly?

Yes, that is correct. Euclid's proof guarantees that in any 10 consecutive natural numbers, there is at least one prime number. However, as I mentioned earlier, the largest known gap between consecutive primes is $70,000,000$, which means that there can be 70,000,000 consecutive composite numbers between two consecutive prime numbers. Therefore, the existence of such

But also...

Interesting. And what about this SMT2 formula, is it satisfiable? (declare-fun f (Int) Int) (assert (forall ((x lnt)) (> (f (+x 1)) (f x))))
(assert (forall ((x Int))) (< (f (+ x 100)) (f x))))

To determine if the formula is satisfiable, I can use an SMT solver. After converting the input into an SMT-LIB file format, and running it through an SMT solver, the answer is that the formula is unsatisfiable.

To explain in more detail, the formula declares a function f that maps integers to integers. The assertion contains two parts:

1. For all integers x, the value of $f(x+1)$ is greater than $f(x)$.
2. For all integers x, the value of $f(x+100)$ is less than $f(x)$.

These assertions impose strong constraints on the behavior of the function f . In particular, they imply that f must be a strictly increasing function, because if $f(x+1)$ is greater than $f(x)$, and $f(x+100)$ is less than $f(x)$, then there must be a point in between x and $x+100$ where the value of f is at a maximum.

However, such a function does not exist. To see why, consider the case where $\mathrm{x}=0$. Assertion

ML and Solving

General idea:

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML: 1 Hard for SMT

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains

ML and Solving

■ General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
12 Enable large gains
3 Decisions do not need to be made very frequently

ML and Solving

■ General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
12 Enable large gains
3 Decisions do not need to be made very frequently

ML and Solving

■ General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
2 Enable large gains
3 Decisions do not need to be made very frequently
Over multiple instances vs.

ML and Solving

■ General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
12 Enable large gains
3 Decisions do not need to be made very frequently
Over multiple instances vs. On a single instance

ML and Solving

■ General idea:
1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
\simeq Enable large gains
3 Decisions do not need to be made very frequently
Over multiple instances vs. On a single instance
■ If multiple instances train, on successful runs.

ML and Solving

- General idea:

1 Identify a non-deterministic point in an algorithm.
2 Decide by ML rather than by hardwired heuristic.
3 Profit!
■ Quantifiers are a good target for ML:
1 Hard for SMT
\simeq Enable large gains
3 Decisions do not need to be made very frequently
Over multiple instances vs. On a single instance
■ If multiple instances train, on successful runs.

- What to train on for a single instance?

Background: Herbrand

- In FOL $(\forall x \phi)$ is unsatisfiable iff there is unsatisfiable finite grounding from the Herbrand universe

Background: Herbrand

- In FOL $(\forall x \phi)$ is unsatisfiable iff there is unsatisfiable finite grounding from the Herbrand universe
- Example

$$
\begin{aligned}
& f(f(c)) \neq c \\
\wedge & (\forall x)(f(x)=x)
\end{aligned}
$$

Background: Herbrand

■ In FOL $(\forall x \phi)$ is unsatisfiable iff there is unsatisfiable finite grounding from the Herbrand universe

- Example

$$
\begin{aligned}
& f(f(c)) \neq c \\
\wedge & (\forall x)(f(x)=x)
\end{aligned}
$$

Instantiation:

$$
\begin{array}{ll}
& f(f(c)) \neq c \\
\wedge & f(c)=c \\
\wedge & f(f(c))=f(c)
\end{array}
$$

Herbrand universe: $\left\{f^{i}(c) \mid i \in \mathbb{N}_{0}\right\}$

Background: Herbrand++

■ Consider only ground terms in the formula: $(\forall x \phi) \wedge G$

Background: Herbrand++

■ Consider only ground terms in the formula:
$(\forall x \phi) \wedge G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right]$, where $t_{1} \in G$

Background: Herbrand++

■ Consider only ground terms in the formula:
$(\forall x \phi) \wedge G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right]$, where $t_{1} \in G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right]$, where $t_{2} \in$ $\left(G \wedge \phi\left[t_{1} / x\right]\right)$

Background: Herbrand++

■ Consider only ground terms in the formula:
$(\forall x \phi) \wedge G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right]$, where $t_{1} \in G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right]$, where $t_{2} \in$ $\left(G \wedge \phi\left[t_{1} / x\right]\right)$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right] \wedge \phi\left[t_{3} / x\right]$, where $t_{3} \in\left(G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right]\right)$

Background: Herbrand++

- Consider only ground terms in the formula:
$(\forall x \phi) \wedge G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right]$, where $t_{1} \in G$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right]$, where $t_{2} \in$ $\left(G \wedge \phi\left[t_{1} / x\right]\right)$
$(\forall x \phi) \wedge G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right] \wedge \phi\left[t_{3} / x\right]$, where $t_{3} \in\left(G \wedge \phi\left[t_{1} / x\right] \wedge \phi\left[t_{2} / x\right]\right)$
■ Still infinite but finite in each step! [?, ?]

Onion Instantiation

$$
G \wedge \forall x . \phi
$$

Onion Instantiation

Onion Instantiation

Motivation - SMT instantiation

Disprove in LIA:

Motivation - SMT instantiation

Disprove in LIA:

Quantifier	Instantiations
	$(\forall x f(x)<f(x+1))$
$\wedge(\forall x f(x)>f(x+100))$	$0 . .99$
$\wedge(\forall x f(x)<3 x)$	0
$\wedge(\forall x g(x)<3 x)$	-
\wedge	

Only some instantiations will be useful. (Typically small portion)
but our "Herbrand pool" is growing regardless

Multi-armed Bandit Problem (MAB)

■ Levers give rewards each time they're pulled.

Multi-armed Bandit Problem (MAB)

■ Levers give rewards each time they're pulled.
■ Rewards vary according to some distribution.

Multi-armed Bandit Problem (MAB)

■ Levers give rewards each time they're pulled.
■ Rewards vary according to some distribution.

- What is the best lever-pulling strategy to accumulate most profit?

Exploitation versus Exploration

■ Should we focus on levers that gave most reward in the past?

Exploitation versus Exploration

■ Should we focus on levers that gave most reward in the past?
■ Should we explore new levers?

Upper Confidence Bound (UCB)

Quality $Q_{t}(q)$ of quantifier q at time step t :

$$
Q_{t}(q)=R_{t}(q)+c \sqrt{\frac{\log (t)}{N_{t}(q)}}
$$

■ $R_{t}(q)$ mean reward for the quantifier q so far,
■ $N_{t}(q)$ number of times q has been selected,

- c is the confidence value controlling exploitation vs. exploration

Rewards for Quantifiers

■ Activity: measure propagations in the SAT solver caused by the quantifier's instantiations

Rewards for Quantifiers

- Activity: measure propagations in the SAT solver caused by the quantifier's instantiations
■ Difficulty: measure conflicts in the SAT solver caused by the quantifier's instantiations

Implementation

■ Within cvc5's enumerative instantiation [?, ?]

Implementation

■ Within cvc5's enumerative instantiation [?, ?]
■ Reward as linear combination

$$
\alpha \cdot n a c t+\beta \cdot \text { ndiff }
$$

Implementation

■ Within cvc5's enumerative instantiation [?, ?]

- Reward as linear combination

$$
\alpha \cdot n a c t+\beta \cdot \text { ndiff }
$$

■ Chosen by training a linear regression model

$$
\alpha=0.04, \beta=0.1
$$

Experiments - Random Selection

Experiments - ML Selection

Conclusion and Future Work

■ High-level: Can ML you help SMT?

Conclusion and Future Work

■ High-level: Can ML you help SMT?
■ Challenge:
Can we learn within a single instance?

Conclusion and Future Work

■ High-level: Can ML you help SMT?
■ Challenge:
Can we learn within a single instance?

- Moderate results from multi-armed bandits

Conclusion and Future Work

■ High-level: Can ML you help SMT?
■ Challenge:
Can we learn within a single instance?

- Moderate results from multi-armed bandits
- Issues:

Conclusion and Future Work

■ High-level: Can ML you help SMT?
■ Challenge:
Can we learn within a single instance?

- Moderate results from multi-armed bandits
- Issues:
- Over-simplifications in the paradigm: state, interaction

Conclusion and Future Work

■ High-level: Can ML you help SMT?
■ Challenge:
Can we learn within a single instance?
■ Moderate results from multi-armed bandits

- Issues:
- Over-simplifications in the paradigm:
state, interaction
- Good reward function?
"Did we get any closer to a proof?"

