
Automated Analysis of Halo2
Circuits
Fatemeh Heidari Soureshjani Quantstamp & Polytechnique Montreal, Canada

Mathias Hall-Andersen Aarhus University, Denmark

Mohammad Mahdi Jahanara Quantstamp

Jeffrey Kam Quantstamp

Jan Gorzny Quantstamp

Mohsen Ahmadvand Quantstamp

21st International Workshop on Satisfiability Modulo Theories, Italy

2

Plan

1. Introduction: Zero-Knowledge

Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:

Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

3

Plan

1. Introduction: Zero-Knowledge

Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:

Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

Introduced by Goldwasser et al. 1989

Prove that you know something without revealing it.

“For function f and public input x, I know a private witness w
such that f(x,w) = y”

Zero-Knowledge Proofs
Automated Analysis of Halo2
Circuits

zk-SNARK

Succinct Non-interactive Argument of KnowledgeZero-Knowledge

4

ZK DSLs & PLONK

● Some ZK DSLs and frameworks exist

○ Circom (Bellés-Muñoz et al. 2022)

○ ZoKrates (Eberhardt and Tai 2018)

○ Halo2 (ZCash; no paper yet?)

● Under the hood, they typically compile to one of the following

constraint systems:

○ Rank 1 Constraint System (R1CS)

■ Groth16 (Groth 2016)

○ PLONKish arithmetic

■ PLONK (Gabizon and Williamson 2019)

■ TurboPLONK (Gabizon and Williamson 2019)

■ plookup (Gabizon and Williamson 2020)

■ UltraPLONK (Aztec 2021; no paper yet?)

■ HyperPLONK (Chen et al. 2022)

Automated Analysis of Halo2
Circuits

5

Halo2

Selector (s) Instance (b) Advice (a) Fixed (C)

1 15 5 83

Verifier + Prover
(input)

Prover
(witness)

Verifier + Prover
(constant)

+ Constraints:

si (Ci ᐧ bi-ai) = 0

● Popular zero-knowledge proof system library in Rust

● Uses PLONKish arithmetization to express circuits: circuits are

tables, and we add constraints over the table

f(⟨a,b,C⟩, s) = s (C ᐧ a - b)

row i

Shaded area is a region and

a gate

(entire row in this example)

Automated Analysis of Halo2
Circuits

6

Vanishing Polynomials

Selector (s) Instance (b) Advice (a) Fixed (C)

1 15 5 83

Verifier + Prover
(input)

Prover
(witness)

Verifier + Prover
(constant)

+ Constraints:

si (Ci ᐧ bi-ai) = 0

row i

A polynomial vanishes if it evaluates to 0 over all rows. All polynomial
constraints in a Halo2 proof system should vanish over all rows for a valid
witness and public input pair.

Do this by either
● setting the irrelevant selector variables to 0, or
● providing (possibly secret) assignments to the table cells that result in the

polynomial’s evaluation to 0.

Automated Analysis of Halo2
Circuits

7

8

ZK Problems

https://github.com/0xPARC/zk-bug-tracker

Automated Analysis of Halo2
Circuits

8

9

● We describe a Proof-of-Concept / Work-In-Progress tool for analysis of

Halo2 circuits in Rust

● Analyses for the following issues:

○ Underconstrained circuits

■ Assigned but unconstrained cells (abstract interpretation)

■ Multiple assignments to witnesses for a public input (SMT)

○ Unused custom gates (abstract interpretation)

○ Unused columns (abstract interpretation)

This Work
Automated Analysis of Halo2
Circuits

https://github.com/quantstamp/halo2-analyzer

Download it here!

9

Related Work

● Picus (https://github.com/chyanju/Picus)

○ Uses symbolic execution

○ Supports custom queries / property checking

○ Automated verification

… but for R1CS

● Ecne (https://github.com/franklynwang/EcneProject)

○ Fixed-point algorithm

○ Needs rules to be specified

 … but also for R1CS

● QED2 (Pailoor et al., 2023)

○ SMT-based approach

○ “uniqueness inference”

 … but for Circom (R1CS)

Automated Analysis of Halo2
Circuits

10

11

Plan

1. Introduction: Zero-Knowledge

Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:

Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

Abstract Interpretation & Halo2

Uses Abstract Interpretation (Cousot & Cousot, 1976)

Approximation of programs via “partial execution”: some calculations
are performed, but others are not.

For Halo2: partially execute the polynomials, using abstract values.
● Try to determine if some polynomials are always non-zero; then

they would not vanish!

Automated Analysis of Halo2
Circuits

12

13

Create a new enum that represents a polynomial’s value which is
either:

○ Something (probably depending on the witness)
○ Definitely not zero (for any witness)
○ Definitely zero (for any witness)

Then “partially execute”: add, multiply, subtract values and get some
inference (e.g. 0+0=0). Example of adding values below.

Automated Analysis of Halo2
Circuits

Abstract Interpretation & Halo2

13

No witness is provided; we can't evaluate the gate polynomials, but
we can evaluate polynomials in regions for concrete values of selector
variables and constant variables

So we can get checks for:
● Unused Gates: for every gate there exists a region in which it is not

always zero
● Unconstrained Cells: for every assigned cell in the region, it occurs

in a polynomial which is not identically zero over this region
● Unused Column: every column occurs in some polynomial

May yield false negatives: may return that a polynomial is not
identically zero, when in fact it is

Automated Analysis of Halo2
Circuits

Abstract Interpretation & Halo2

14

Plan

1. Introduction: Zero-Knowledge

Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:

Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

Under-Constrained Circuits

A Plonkish circuit C is under-constrained if there exists an

assignment x to Instance columns of C, and two set of

assignments w and w′ for its Advice columns, where both

{x, w} and {x, w′} satisfy constraints of C.

Automated Analysis of Halo2
Circuits

16

A Plonkish circuit C is over-constrained if for some

assignment x to instance columns of C, no assignments to

the advice columns of C enable the system to have a

solution, but the developer expects there to be one.

Example. Consider a circuit that states that for any

positive integer x as input, there are two (distinct) advice

columns entries that are positive integer and add up to x.

● for x≥2 ✅
● for x=1 ❌

it would not be meaningful to call the circuit

over-constrained for this input value.

Automated Analysis of Halo2
Circuits

Over-Constrained Circuits

17

Halo2 to SMT

We convert from Rust to SMTLIB and add constraints as

a conjunction.

● For gate constraints, we add a constraint that the

polynomial is equal to zero

(add(xa,b,c , ya’,b’,c’) = 0)

● For copy constraints, we add a constraint that the

variables are equal

(xa,b,c = ya’,b’,c’)

● For lookup constraints, we add a constraint that a

disjunction enforcing that a variable is equal to one of

the legal values

(xa,b,c = v1 ∨ xa,b,c = v2 ∨… ∨ xa,b,c = vk)

Automated Analysis of Halo2
Circuits

18

Halo2 to SMT

1 (set-logic QF_FF)
2 (declare-fun A-1-1-1 () (_ FiniteField 307))
3 (assert (= A-1-1-1 (as ff0 (_ FiniteField 307)))

We use CVC5 (Barbosa et al. 2022) since there is a finite

field solver for it (Ozdemir et al. 2023).

Automated Analysis of Halo2
Circuits

19

Extract
Polynomials

Build Z3 Solver SAT?

Not under-
constrained

Under-
constrained

Add new
constraints

SAT?

No

No

Yes

Yes

Over-
constrained

Analysis Logic
Automated Analysis of Halo2
Circuits

20

Under-Constrained

Circuits Example

Automated Analysis of Halo2
Circuits

Motivating Example

 Constraints:

b0 · (b0 - 1) = 0

 b1 · (b1 - 1) = 0

 b0 + 2·b1 = x

Gate for x in [0,3]

Advice
variables

Ensures binary values

x is in the desired range

Instance
Variable

22

Automated Analysis of Halo2
Circuits

Motivating Example

meta.create_gate("b1_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

23

Automated Analysis of Halo2
Circuits

Motivating Example

meta.create_gate("b1_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

meta.create_gate("b0_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

24

Automated Analysis of Halo2
Circuits

Motivating Example

meta.create_gate("b1_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

meta.create_gate("b0_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

meta.create_gate("equality", |meta| {
 let a = meta.query_advice(b0, Rotation::cur());
 let b = meta.query_advice(b1, Rotation::cur());
 let c = meta.query_advice(x, Rotation::cur());

// we’ll copy public instance here later using constrain_instance
 let dummy = meta.query_selector(s);
 vec![dummy * (a + Expression::Constant(Fr::from(2)) * b - c)]
}); 25

Motivating Example Results

● Takes < 1s to run on this example (no surprise)

● Push-button -- no additional property description necessary to
write; but you could add more

b0 -> 1
b1 -> 1
x -> 3

equivalent model with same public input:
b0 -> 3
b1 -> 0
x -> 3

Result:
The circuit is underConstrained.

Automated Analysis of Halo2
Circuits

26

Automated Analysis of Halo2
Circuits

Motivating Example

meta.create_gate("b1_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

meta.create_gate("b0_binary_check", |meta| {
 let a = meta.query_advice(b1, Rotation::cur());
 let dummy = meta.query_selector(s);
 vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
 // a * (1-a)
});

meta.create_gate("equality", |meta| {
 let a = meta.query_advice(b0, Rotation::cur());
 let b = meta.query_advice(b1, Rotation::cur());
 let c = meta.query_advice(x, Rotation::cur());

// we’ll copy public instance here later using constrain_instance
 let dummy = meta.query_selector(s);
 vec![dummy * (a + Expression::Constant(Fr::from(2)) * b - c)]
});

Copy and paste error!

27

Plan

1. Introduction: Zero-Knowledge

Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:

Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

Conclusion

● We have shown an approach to use abstract interpretation to

find assigned but unconstrained cells, unused custom gates,

and unused columns in Halo2

● We have shown how SMT solvers can be used to find under-

and over-constrained Halo2 circuits

https://github.com/quantstamp/halo2-analyzer

Download it here!

Automated Analysis of Halo2
Circuits

29

Future Work

Future work is needed!

○ Limitations not yet known - no readily available corpus of circuits

to test scaling on; conversion, curation, or building necessary

○ More analyses for other types of bugs and issues within Halo2

circuits; best practices?

○ Comparison with, combination of, or inspiration from other

approaches

https://github.com/quantstamp/halo2-analyzer

Automated Analysis of Halo2
Circuits

30

Thank you for listening!

@quantstamp

@jgorzny

@jgorzny

https://github.com/quantstamp/halo2-analyzer

Download it here!

jan@quantstamp.com

