
Structural Bit-vector Model Counting

Seonmo Kim and Stephen McCamant

University of Minnesota, Minneapolis, Minnesota, U.S.A.
{smkim, mccamant}@cs.umn.edu

Abstract

Various approximate model counting techniques have been proposed and are used in
many applications such as probabilistic inference and quantitative information-flow secu-
rity. The hashing-based technique is a well-known approach and can be more scalable
than exact model counting techniques. However, its performance is highly dependent on
the performance of a decision procedure (SAT or SMT solver) and adding numerous hash-
ing constraints to a formula might cause a solver to perform poorly.

We propose a model counting technique which computes lower and upper bounds of
the number of solutions to an SMT formula by analyzing the structure of the formula,
which means this approach does not rely on a decision procedure. Our algorithm runs in
polynomial time and gives firm lower and upper bounds unlike other approximate model
counters that compute probabilistic bounds. We compare our algorithm with state-of-the-
art model counters and our experiments show that our approach is faster than others and
provides a trade-off between computational effort and the precision of results.

1 Introduction

Model counting is a quantitative generalization of the satisfiability problem that asks for the
number of satisfying assignments for a formula. Some of the many applications of model count-
ing include combinatorics, safety analysis, probabilistic inference, and quantitative information-
flow analysis of software. Model counting is also closely connected to uniform random sampling
of formula solutions. However, exact model counting even just for quantifier-free Boolean for-
mulas (#SAT) is complete for the complexity class #P which is believed to be intractable.
Approximations to an exact model count are useful in many applications, so the difficulty of
exact model counting motivates exploring approximation algorithms.

The best-known approaches in recent research use hashing to reduce approximate model
counting to an adaptive sequence of satisfiability queries covering subsets of the solution space.
These algorithms provide probabilistic bounds on the accuracy of their approximation, and they
can take advantage of advances in satisfiability solving (both SAT and SMT). However these
approaches still have limited scalability in practice: they require a large number of satisfiability
queries to achieve tight bounds, and hashing can make individual queries much more expensive,
given the complex interactions between hashing constraints and solver optimizations.

Also valuable but less developed are approximation algorithms which achieve guaranteed
efficiency and sound bounds, at the expense of not providing an accuracy guarantee. This
trade-off can be achieved using algorithms similar to ones used in static program analysis that
derive lower and/or upper bounds following the syntactic structure of a formula rather than
using semantic decision procedure queries. We refer to these as “structural” approximate model
counting algorithms.

Previous structural model counting algorithms have been specialized for narrow domains,
or have been built into larger systems in ways that are not easily reusable. In this work, we
build a new structural approximate model counting tool for quantifier-free SMT formulas over
the theory of bit vectors (SMT-LIB QF BV), one of the most common theories used to model



Structural Bit-Vector Model Counting Kim and McCamant

bounded arithmetic and software semantics. We also provide a commonly useful generalization
known as projected model counting, in which a user can specify a subset of the variables in a
formula over which a model should be counted. Our tool uses algorithms which build on the
partial description of a previous closed-source tool [16], but we needed to develop new structural
rules for cases that were missing or restricted in previous work. We extend the algorithm to
cover a more complete set of bit-vector operators, and to use both the signed and unsigned
orderings of bit vectors. However our current implementation, like Martin’s [16], is limited
to conjunctions and not arbitrary Boolean combinations of bit-vector relations. This matches
the needs, for instance, of typical single-path symbolic execution, where a path condition is a
conjunction of branch conditions, each of which is an equality or inequality over numeric (e.g.
bit-vector) terms.

We have built a standalone tool, SMC, that operates on input in the standard SMT-LIB2
format, and which we have open-source. We have checked the correctness of the propagation
rules for each type of bit-vector expression via bounded exhaustive testing. We empirically
compare SMC’s performance with representative state-of-the-art exact and approximate model
counting tools. The results show that SMC’s performance scales much better than these other
tools, and that the sound upper and lower model-count bounds that it provides are often usefully
accurate.

2 Related Work

We categorize previous model-counting tools based on exact approaches, hashing-based approx-
imation, and structural approximation.

Exact model counting Exact model counting for propositional formulas (#SAT) typically
uses techniques related to SAT solving: intuitively, a #SAT algorithm must traverse the entire
search space even for a satisfiable formula, instead of stopping at the first satisfying assignment
as a SAT solver does. The counting process is optimized by caching information about the
number of solutions for sub-formulas that appear repeatedly in the total. Relsat [4], Cachet [19],
and sharpSAT [24] are some examples of tools based on varieties of caching. dSharp [18] builds
on sharpSAT and also computes a conversion of Boolean formula to a restricted normal form
known as d-DNNF (deterministic, decomposable negation normal form) which facilitates other
operations. dSharp p [2] further builds on dSharp to support projected model counting; it
is the exact model counting tool we compare with in our evaluation below. Two other notable
more recent systems are countAntom [5], which uses a parallel algorithm, and Ganak [20],
which uses probabilistic hashing to save space, but still produces an exact model count with a
guaranteed minimum probability.

Hashing-based model counting The core principle that enables hashing-based approxi-
mation was first deployed for theoretical results, notably by Sipser [21], Stockmeyer [23], and
Valiant and Vazirani [25]. It was first applied to build model counting tools by Gomes et al. [12],
who gave an approach that probablistically checked a hypothesized lower or upper bound. Later
systems achieved complete automation by designing outer-loop algorithms to search over model
count hypotheses. The best known tool of this kind is ApproxMC [7] and its successors includ-
ing ApproxMC2 [8], and BIRD/ApproxMC3 [22], and a projecting variant ApproxMC-p [14].
SearchMC [13] reduces the number of queries needed by keeping a statistical estimation of the
model count, and also implements a mode that can apply directly wrap an SMT solver (tools

2



Structural Bit-Vector Model Counting Kim and McCamant

(declare-fun x () (_ BitVec 8))

(declare-fun y () (_ BitVec 8))

(assert (= y (bvadd (bvand x 15) 4)))

Figure 1: Simple Example

designed solely for #SAT require eager bit-blasting). We take SearchMC as the representative
of hashing-based approximate model counters in our evaluation.

Structural model counting Structural approaches to approximate model counting that
can provide non-probabilistic bounds (but not guaranteed precision) have seen relatively less
tool development. The most direct predecessor of our work in this paper is the FSCB (Fast
Solution Count Bounder) algorithm of Martin [16], which as far as we are aware was applied
only as part of symbolic execution system to estimate the amount of information revealed by
bug reports [6]. Martin’s implementation was not available, but we used the description in
his technical report as a starting point for the system we developed, as described in more
detail in Section 3. Other previous structural model-counting systems have been specialized
for other domains. Luu et al. [15] build a model counter for string constraints such as arise in
symbolic execution of high-level languages like JavaScript; their approach is based on generating
functions. Aydin et al.’s MT-ABC [1] uses a combination of structural and automaton-based
algorithms for constraints that can include a mix of strings and linear arithmetic. Meng and
Smith’s two-bit-pattern technique [17] is a hybrid of structural and exact counting approaches
to #SAT. It structurally over-approximates the model count by determining, for every pair
of bits in a formula, what values they can have in isolation (using many small satisfiability
queries). Then the combination of these constraints is a 2CNF formula, which the authors
found could be model-counted efficiently in practice (though general 2CNF model counting is
still #P-hard).

3 Structural Model Counter

The Structural Model Counter (SMC1) takes as input an SMT-LIB2 formula which consists
of variables and assertions. It outputs lower and upper bounds of satisfying assignments that
make a given formula true. First, we describe how this structural model counting technique
works with a simple example in Fig 1. Since x and y are 8-bit variables, the model counts
of two variables are both 256 when they are declared. Then we parse an assertion to analyze
the structure of the formula. (bvand x 15) has the minimum 0 and the maximum 15. This
generates 16 distinct values. Adding 4 makes the minimum 4, the maximum 19 and still 16
distinct values. This is equal to y thus y has 16 distinct values. The model count of this formula
is 256 since x has 256 distinct values and x determines y. This shows a simple process of the
structure model counting. In this section, we describe this algorithm in detail, its correctness,
some current limitations and differences from the previous work.

1The source code and benchmarks are available at: https://github.com/seonmokim/smc

3



Structural Bit-Vector Model Counting Kim and McCamant

3.1 Algorithm

The main algorithm is mostly inspired by Martin’s FSCB (Fast Solution Count Bounder) algo-
rithm [16]. He proposed this idea to be a fast algorithm that can handle complex expressions
such as standard arithmetic or bit shifts. However, FSCB does not consider signed data types
and the source code is not available. We extend FSCB to handle both unsigned and signed data
types and cover more operators including signed division, signed less-than, signed greater-than
and so on. Also, we improve the idea to compute tighter bounds and verify its correctness using
small-sized unit tests exhaustively. In this section, we describe two steps of our algorithm. It
first computes the bounds for each individual assertion, and then merges them for the model
count of a given formula.

3.1.1 Per-Assertion Bounds and Analysis

When a variable is declared or an expression is generated, we create a corresponding node to rep-
resent this variable or expression. Each node contains elements as [ul, uh, sl, sh, lc, hc,

hom, vars]. Since we only consider bit vectors in SMT-LIB2 format, we compute both cases,
unsigned and signed representations, in a node. ul, uh, sl and sh are the unsigned mini-
mum (low), the unsigned maximum (high), the signed minimum and the signed maximum of
the node, respectively. lc and hc are the low cardinality (lower bound), the high cardinality
(upper bound) of the node, respectively. We select the bounds which have a shorter interval
between the unsigned and signed bounds since both the bounds are sound and tighter bounds
give a better precision. hom is a flag such that a node is homogeneous only if every image has the
same number of preimages. For example, (bvand x 15) is homogeneous since it generates 16
distinct values and each value (image) has the same number of preimages (16 cases if x is 8-bit).
This flag is useful when computing bounds more precisely with a constant value. For example,
let us assume that we have (= (bvand x 15) 0) and x is 8-bit. (bvand x 15) should be zero
to satisfy this assertion and one value of (bvand x 15) maps to 16 preimages of x. Therefore,
this can be computed easily as x has exactly 16 distinct values to satisfy this assertion. vars is
a set of variables which presents in an assertion. As we described above, we represent a signed
and unsigned values in a single node. One reason that we need both representations is that we
want to handle signed operators such as signed division, signed less-than, signed greater-than
and so on. Another reason is the ways of computing signed values and unsigned values are
different. Therefore, we maintain both representations in every operation and give a warning
whenever SMC sees a conflict case.

SMC first replaces each constant or variable from an expression with the corresponding node.
If it is a constant c, the node can be represented as [c, c, c, c, 1, 1, true, {}]. Note that
if c is a binary or hexadecimal number, we convert the number using the two’s complement.
The next step is that SMC breaks down an expression tree and generates a node based on the
expression rules starting from the sub-expressions. SMC determines how to compute the node
values from the expression rules for each supported operation. We can extend SMC to support
additional operations by adding new operation rules. We only show a subset of the operation
rules here.

Pseudocode for bvadd is shown in Fig 2. When the tool reaches a bvadd operation, it
first checks whether the variables are both constant values. This checking applies to other
operations as well and we can easily compute all the values if they are both constant values.
Next we check that the answer might be an arithmetic positive or negative overflow. If this
occurs, we set ul and uh as the minimum and the maximum of the variable, respectively, based
on its bit-width unless the variables are both constants. This applies to sl and sh to be the

4



Structural Bit-Vector Model Counting Kim and McCamant

(bvadd f g)

if isConstant(f) and isConstant(g):

ul = uh = (f.ul + g.ul) % 2^f.width

sl = sh = (f.sl + g.sl) % 2^f.width

return ul , uh , sl , sh , 1, 1, true , [f.vars ∪ g.vars]

if f.uh + g.uh > umax:

ul = umin

uh = umax

else:

ul = f.ul + g.ul

uh = f.uh + g.uh

if f.sl + g.sl < smin or f.sh + g.sh > smax:

sl = smin

sh = smax

else:

sl = f.sl + g.sl

sh = f.sh + g.sh

lc = min(f.lc+g.lc -1, abs(uh -ul), abs(sh -sl))

if isCommon(f,g):

lc = 1

hc = min(f.hc * g.hc , abs(uh -ul), abs(sh -sl))

hom = (f.hom and isConstant(g))

or (isConstant(f) and g.hom)

or (not isCommon(f,g) and isPerm(f) and isPerm(g))

return ul , uh , sl , sh , lc , hc , hom , [f.vars ∪ g.vars]

Figure 2: The operation rule of bvadd

negative minimum and positive maximum. lc and hc can be computed as the sum of two
variable’s minimum cardinality minus 1. In order to generate the smallest set of adding two
sets, one value has to be generated in multiple ways. For example, adding {1, 2, 3} and {2,
3} makes {3, 4, 5, 6} which has 4 elements. If the function has variables in common (for
example, (x&1)+(¬x&1)), the minimum cardinality could be 1. The maximum cardinality
can be computed as the multiplication of each variable’s maximum cardinality. Note that
the cardinalities must be less than the distance between its high value and low value. The
addition is homogeneous if one variable is homogeneous and another is a constant or they do
not have variables in common and both are permutations. A variable is a permutation if it is
homogeneous and unconstrained.

Let us go back to the example in Fig 1 and proceed with the SMC algorithm. When
x and y are declared, two corresponding nodes are generated. Initial values of x would
be [0, 255, -128, 127, 256, 256, true, {x}] and initial values of y would be the same
except vars={y}. If we have the equation (= y (bvadd (bvand x 15) 4)), we parse the
equation and generate a node from the expression. (bvand x 15) returns a node with

5



Structural Bit-Vector Model Counting Kim and McCamant

(= f g)

· · ·
leq = max(f.ul , g.ul)

heq = min(f.uh , g.uh)

minlhit = f.lc - max(f.uh - heq , leq - f.ul)

minlhit = min(minlhit , heq - leq + 1)

minrhit = g.lc - max(g.uh - heq , leq - g.ul)

minrhit = min(minrhit , heq - leq + 1)

inter = max(1, minlhit + minrhit - (heq - leq + 1))

ic = 2^(f.width + g.width)

if f.hom:

ld_f = 2^f.width / f.hc

hd_f = 2^f.width / f.lc

else:

ld_f = 1

hd_f = 2^f.width - f.lc + 1

if g.hom:

ld_g = 2^g.width / g.hc

hd_g = 2^g.width / g.lc

else:

ld_g = 1

hd_g = 2^g.width - g.lc + 1

lb = max(1, min(inter * ld_f * ld_g , ic))

hb = min(inter * hd_f * hd_g , ic)

· · ·

Figure 3: The operation rule of =

[0, 15, 0, 15, 16, 16, true, {x}] and then (bvadd (bvand x 15) 4) returns a node with
[4, 19, 4, 19, 16, 16, true, {x}]. When there is an equality or inequality check in an as-
sertion, SMC computes a lower bounds and upper bound of variables in the assertion. We
denote lb and hb which are the lower and upper bounds of a set of variables, respectively. Fig
3 shows the crucial part to compute the bounds.

This equal rule computes the cardinalities of the left-hand side and the right-hand side
and then the cardinality of the intersection between the left-hand side and the right-hand.
Depending on the homogeneity of the variable, we compute the low and high density of the
variable so we can compute the lower bound and upper bound. We also apply the same
procedure to signed values and select the bounds that has a smaller interval. In this example,
SMC computes the lower bound as 256 and the upper bound as 256, which is an accurate
answer.

3.1.2 Combining Bounds

The second step is to combine per-assertion bounds. For each assertion with comparison op-
erators such as equal, greater-than or less-than, we compute the lower and upper bounds on
the number of solutions to variables in the assertion. Recall that lb and hb are the bounds
of a set of variables. We use vars to denote the set of variables in an assertion. Given two

6



Structural Bit-Vector Model Counting Kim and McCamant

mergeBounds(Bounds a, Bounds b):

vars = a.vars ∪ b.vars

inter_vars = a.vars ∩ b.vars

width = inter_vars.width

inter_max = min(2^width , math.gcd(a.ha, b.ha))

inter_min = min(2^width , math.gcd(a.la, b.la))

if a.vars and b.vars are in common:

if set(a.vars) == set(b.vars):

la = min(a.la , b.la)

ha = min(a.ha , b.ha)

elif a.vars ⊂ b.vars:

la = b.la

ha = b.ha

elif b.vars ⊂ a.vars:

la = a.la

ha = a.ha

else:

ula = a.ula * b.ula / inter_min

uha = a.uha * b.uha / inter_max

else:

la = a.la * b.la

ha = a.ha * b.ha

return Bounds(la , ha , vars)

Figure 4: The operation rule of mergeBounds

such bounds, we can merge per-assertion bounds into bounds that apply to both equations
together. We recursively merge the bounds pairwise until the bound represent all the variables
in the system. For example, if two bounds are independent, we can simply multiply each lower
bound and upper bound. We present pseudocode for merging bounds in Figure 4. We first
check whether two bounds are independent or not. If they are independent, we can just simply
multiply two bounds. If they have variables in common, then we consider four cases: they are
identical, one is subset of another (or vice versa) and they are overlapping sets. We compute
the bounds conservatively based on the case. The bounds can be more precise based on the
order of merging such as merging similar variables first. This needs an extra running time and
we left this for the future work.

3.2 Differences between SMC and FSCB

Here we briefly describe the differences between SMC and FSCB. First, we cover a more com-
plete set of bit-vector operators for both the signed and unsigned orderings of bit vectors. Table
1 shows which bit-vector operators are supported by FSCB and SMC.

Also, we added more edge cases in operators and fixed some operators to compute a better
precision. For example, bvadd in SMC computes the low cardinality as max(f.lc, g.lc) but
we empirically find out that f.lc+g.lc-1 gives a better result.

7



Structural Bit-Vector Model Counting Kim and McCamant

FSCB bvadd, bvsub, bvmul, bvand, bvor, bvxor, bvshl, bvlshr, =, distinct, ult, ugt
SMC bvadd, bvsub, bvmul, bvand, bvor, bvxor, bvshl, bvlshr, =, distinct, ult, ugt,

ule, uge, slt, sgt, sle, sge, bvudiv, bvsdiv, concat, extract, sign extend

Table 1: Bit-vector operators supported by SMC and FSCB

3.3 Correctness

We have tested the correctness of the operation rules of bit-vector expression using bounded
exhaustive checking. We set each variable to be a bit-vector of width 4 and executed each
operator with the power set of each variable. We checked whether ul, uh, sl, sh, lc and hc

from our operation rules are sound. We verify unary operators and binary operators. First, we
compute ul, uh, sl, sh, lc and hc based on our operation rules. We generate the power set of
one variable which has 216 sets and execute an operation which generates 232 sets for binary
operators. The same procedure is applied to unary operators. We verify that (1)the unsigned
smallest value of each set is greater than ul, (2)the unsigned largest value of each set is less
than uh, (3)the signed smallest value of each set is greater than sl, (4)the signed largest value
of each set is less than sh and (5)the number of elements of each set is less than hc and greater
than lc. However, we have not checked the correctness of merging bounds due to the state
explosion problem since we need to test the case where bounds contain multiple variables.

3.4 Limitation

In this section, we discuss the limitations of our current implementation. We have extended
FSCB to support more operators in SMT-LIB2 format. However, some of SMT-LIB2 operators
are not supported in SMC and we are currently working on handling the whole SMT-LIB2
format standard. Also, some operators compute the cardinalities very conservatively due to the
limitation of the node representation, hence those operators lead to less precise results (loose
bounds). This is for the future work to have more coverage of SMT-LIB2 format standard and
design more precise rules.

Lastly, the order of assertions and merging bounds affects precision. For example, let say
we have two variable v1 and v2 and one constant c. If we have assertions (= v1 v2) and (=
v2 c), the results are computed differently depending on which assertion is processed first. For
example, (= v1 v2) computes the bounds [256, 256] and (= v2 c) computes the bounds [1, 1] if
all the variables are 8-bit. If we merge the two bounds, the final bound would be [256, 256].
But if we flip the order which (= v2 c) computes the bounds first, then (= v1 v2) computes
the bounds [1, 1] since we know that v2 is a constant value this time. This can be resolved
by recursively computing the bounds until the bounds do not change but we do not have any
proof about its time complexity. This means the bounds can be more precise by merging the
per-assertion bounds in a better order. We believe finding more efficient way to merge bounds
will improve the performance and this is for the future work.

4 Experimental Results

In this section, we show our experimental results and all our experiments were performed
on a machine with an Intel Core i7 3.40Ghz CPU and 16GB memory. We implement our
algorithm with Python and use our own SMT-LIB2 parser. Our algorithm supports SMT-LIB2
format [3]. We compare our algorithm with state-of-the-art model counters: SearchMC [13] and

8



Structural Bit-Vector Model Counting Kim and McCamant

dSharp p [2]. SearchMC is an approximate model counter using XOR hashing constraints to
estimate a lower bound and upper bound of the model count. It is a randomized algorithm and
gives a desired level of distance between a lower bound and upper bound with a probability of
at least 0.6. In this experiment, we ran SearchMC 10 times for each benchmark until it gave
the first bounds with a probability of at least 0.6 and computed the average of the results.
dSharp p is an exact model counter and is implemented on top of dSharp [18] to support
projection. We collected various SMT BV benchmarks from previous works [10, 11]. Here
we show partial results of some representative benchmarks. Table 2 shows a comparison on
performance and approximation. The second column shows the number of bits we want to
count over. Since dSharp p is an exact model counter, we take log2 of the answer which
shows in the third column and the running times (in seconds) of dSharp p are shown in
the fourth column. We also show the bounds (log base 2) computed from SearchMC and
SMC following with their running times. dSharp p performs well on a small-sized problems
and its performance decreases as the size and the complexity of formula increases. In these
experiments, SearchMC used the state-of-the-art SMT(BV) solver Z3 [9] and its performance
was highly dependent on the performance of the solver.

SMC shows a good precision on some benchmarks if the structure of the formula is well-
organized. However, it gave very loose bounds on some benchmarks which SMC was not able to
analyze the formula well. For example, 5 10 1 and 5 20 1 are the volume computation problems
of convex bodies and consist of a number of inequality constraints. This type of problems show
very loose bounds since SMC computes the bounds very conservatively on inequality constraints.
The main benefit of SMC is the running times. This shows that our approach is faster than
others and it is a trade-off chosen between computational effort and the precision of results in
some benchmarks.

Hashing-based model counting techniques like SearchMC rely on prior hypotheses to produce
more useful results and start an initial hypothesis from zero knowledge. The initial hypothesis
for SearchMC is a uniform distribution over 0 to the maximum bit-width of the output bit-
vector. If we gather results from SMC and use them as the initial hypothesis for SearchMC,
SearchMC is able to give a desired answer faster. For example, in order to solve coloring 4 the
initial hypothesis for SearchMC is a uniform distribution over 0 to 32. If the initial hypothesis
for SearchMC is a uniform distribution over 29.61 to 32 which is computed by SMC, SearchMC
needs a smaller number of queries to find a desired result.

Table 3 shows the performance of the combination of SMC and SearchMC. The results for
plain SearchMC are equivalent to the results in Table 2. We also measured the average number of
iterations (loops) in SearchMC and the results show that the number of iterations was decreased
when we used SMC and SearchMC together. Since SMC already computed tight bounds on
gettoPath1 and calDate 10, we did not run SearchMC on the benchmarks. This experimental
results show that using SMC as a preprocessor of SearchMC gives the performance benefit up
to 1.36x speedup.

5 Conclusion

We propose a structural approximate model counting algorithm, SMC, to compute the lower
and upper bound of solutions to a given SMT formula. This is a fast polynomial algorithm
compared to other state-of-the-art approximate model counters and it runs in O(n+m) where
n is the number of variables and m is the number of assertions. We extend the FSCB algorithm
to cover a more complete set of SMT-LIB2 standard operators and to use both the signed and
unsigned representations of bit vectors. Our evaluation results illustrate that our technique is

9



Structural Bit-Vector Model Counting Kim and McCamant

dSharp p SearchMC SMC
Benchmarks #Bits log2(MC) t(s) Bounds t(s) Bounds t(s)
coloring 4 32 30.75 0.82 [30.15 31.05] 1088.52 [29.61 32.00] 0.001
FINDpath1 32 21.96 0.09 [20.9 22.17] 3.99 [4.00 32.00] 0.001
getopPath1 8 7.92 0.003 [7.50 8.25] 0.21 [7.92 7.94] 0.001
queue 16 6.39 0.006 [5.66 6.97] 0.17 [4.62 10.78] 0.001
calDate 10 36 16.95 0.002 [16.13 17.49] 0.30 [16.95 16.95] 0.001
5 10 1 160 12.02 123.12 [11.34 12.31] 20.73 [7.24 24.77] 0.003
5 20 1 160 8.44 351.57 [7.691 8.88] 29.6 [7.24 24.77] 0.004

Table 2: Comparison Result

SearchMC SMC+SearchMC
Benchmarks #Bits Bounds t(s) #loops Bounds t(s) #loops
coloring 4 32 [30.15 31.05] 1088.52 6.3 [30.16 31.53] 830.88 4.9
FINDpath1 32 [20.9 22.17] 3.99 8.2 [21.24 22.42] 3.55 7.7
getopPath1 8 [7.50 8.25] 0.21 4 - - -
queue 16 [5.66 6.97] 0.17 6.1 [5.60 6.78] 0.15 4.8
calDate 10 36 [16.13 17.49] 0.30 8.3 - - -
5 10 1 160 [11.34 12.31] 20.73 8.9 [11.2 12.44] 18.3 6.4
5 20 1 160 [7.691 8.88] 29.62 8.4 [7.42 8.85] 21.83 5.3

Table 3: Combination of SMC and SearchMC

most beneficial when time performance is a tight requirement.

Acknowledgments

We would like to thank the anonymous reviewers for suggestions which have helped us to
improve our system and the paper’s presentation. The research described in this paper has
been supported in part by the National Science Foundation under grant 1526319 and by the
Office of Naval Research under grant N00014-19-1-2541.

References

[1] Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan,
and Fang Yu. Parameterized model counting for string and numeric constraints. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA, November 04-09, 2018, pages 400–410, 2018.

[2] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey. #∃SAT: Projected model
counting. In Theory and Applications of Satisfiability Testing, 2015.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Version 2.0. Technical
report, Department of Computer Science, The University of Iowa, 2010.

[4] Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of AAAI, pages 203–208, 1997.

[5] Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-Faire caching for parallel #SAT solving.
In Proceedings of SAT, pages 46–61, 2015.

10



Structural Bit-Vector Model Counting Kim and McCamant

[6] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. Better bug reporting with better privacy.
In Proceedings of ASPLOS, pages 319–328, 2008.

[7] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable approximate model
counter. In Proceedings of CP, volume 8124, pages 200–216, 2013.

[8] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Improving approximate counting
for probabilistic inference: From linear to logarithmic SAT solver calls. In Proceedings of IJCAI,
pages 3569–3576, 2016.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of TACAS,
pages 337–340, 2008.

[10] Wei Gao, Hengyi Lv, Qiang Zhang, and Dunbo Cai. Estimating the volume of the solution space
of SMT(LIA) constraints by a flat histogram method. Algorithms, 11:142, 2018.

[11] Cunjing Ge, Feifei Ma, Tian Liu, Jian Zhang, and Xutong Ma. A new probabilistic algorithm
for approximate model counting. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning, 2018.

[12] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for obtain-
ing good bounds. In Proceedings, The Twenty-First National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, pages 54–61, 2006.

[13] Seonmo Kim and Stephen McCamant. Bit-vector model counting using statistical estimation. In
Tools and Algorithms for the Construction and Analysis of Systems, 2018.

[14] Vladimir Klebanov, Alexander Weigl, and Jörg Weisbarth. Sound Probabilistic #SAT with Pro-
jection. In Workshop on QAPL, 2016.

[15] Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. A model counter for constraints
over unbounded strings. In Proceedings of PLDI, pages 565–576, 2014.

[16] Jean-Philippe Martin. Upper and lower bounds on the number of solutions. Technical Report
MSR-TR-2007-164, Microsoft Research, 2007.

[17] Ziyuan Meng and Geoffrey Smith. Calculating bounds on information leakage using two-bit pat-
terns. In Proceedings of PLAS, pages 1:1–1:12, 2011.

[18] Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric Hsu. DSHARP: Fast d-DNNF
Compilation with sharpSAT. In Canadian Conf. on Artificial Intelligence, 2012.

[19] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. In Proceedings of SAT, 2004.

[20] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. GANAK: A scalable probabilis-
tic exact model counter. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages
1169–1176. ijcai.org, 2019.

[21] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, page 330–335, 1983.

[22] Mate Soos and Kuldeep Meel. Bird: Engineering an efficient cnf-xor sat solver and its applications
to approximate model counting. Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

[23] Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, page 118–126, 1983.

[24] Marc Thurley. sharpSAT - counting models with advanced component caching and implicit BCP.
In Proceedings of SAT, pages 424–429, 2006.

[25] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85–93, 1986.

11


	Introduction
	Related Work
	Structural Model Counter
	Algorithm
	Differences between SMC and FSCB
	Correctness
	Limitation

	Experimental Results
	Conclusion

