
Z3str3: A String Solver
with Theory-Aware Heuristics
Murphy Berzish 1, Yunhui Zheng 2, Vijay Ganesh 1

1 University of Waterloo
2 IBM Research

Outline
l Background and overview

l The Z3str3 string solver

l New heuristics
- Theory-aware branching

- Theory-aware case split optimization

l Experimental results

l Future work and conclusions

THE Z3STR3 STRING SOLVER PAGE 2

Overview
l String SMT solvers increasingly used for security

applications and analysis of string-intensive programs

l Many tools developed to address these challenges and
applications: Z3str2, CVC4, Norn, S3, Stranger

l Need for more efficient solvers and heuristics: complex
semantics, easy to create undecidable theories, crossover
with strings and other theories (arithmetic, bit-vector)

THE Z3STR3 STRING SOLVER PAGE 3

Known Theoretical Results
l In 1946, Quine showed that the fully-quantified theory of word equations is

undecidable

l In 1940’s Markov suggested using word equations to settle Hilbert’s Tenth
Problem

l In 1968, Matiyasevich showed a reduction from word equations+length to
Diophantine

l In 1977, Makanin showed that the quantifier-free theory of word equations is
decidable

l In 2012, word equations with single quantifier-alternation was shown to be
undecidable [GRSM 2012]

l In 2016, word equations, length, string-integer conversion shown undecidable
[GB 2016]

l Matiyasevich’s challenge remains open

THE Z3STR3 STRING SOLVER PAGE 4

Input Language of Z3str3

THE Z3STR3 STRING SOLVER PAGE 5

String and integer constants “abc”, “new\nline”, 123
String concatenation (str.++ “abc” “def”)
String length (str.len “abcdef”)
Integer arithmetic (+ 2 2)
String equality (= X “abc”)
Integer comparison (= X 42), (<= A 100)
Regular language membership (str.in.re “aaa” (re.* (str.to.re “a”)))
High-level string operations (str.prefixof “abc” “abcdef”),

(str.contains X “abc”), ...

The Z3str3 String Solver
l Successor to Z3-str and Z3str2

l Native first-class theory solver in Z3 SMT solver framework

l Primary string solver in Z3 official release

l Reasoning about strings, length, regular expressions, and high-
level string operations

l Direct access to the core solver of Z3 has enabled new
heuristics

THE Z3STR3 STRING SOLVER PAGE 6

Architecture of Z3str3

THE Z3STR3 STRING SOLVER PAGE 7

How Z3str3 Solves Word Equations
l Given an equality between string terms, identify all

possible arrangements of subterms

l Generate smaller equations implied by the equality

l Recursively split until the problem is directly solvable

THE Z3STR3 STRING SOLVER PAGE 8

Solving String Equations

v Basic idea

§ Recursively split equations into smaller ones until they are directly solvable

§ Given an equation, identify all possible arrangements

§ Given an arrangement, generate smaller equations

T

M	=	X	.	T Y	=	T	.	N Smaller
Equations

• Keep splitting until solved
• If conflicts detected,

rollback, try another
arrangement

X	.	Y	=	M	.	N

X Y
M N

Sync with Integer Theory

v Consistent solutions in both theories

§ Z3str2 asserts new length constraints during search

Len(T) > 0
Len(M) = Len(X) + Len(T)
Len(Y) = Len(T) + Len(N)

• Keep splitting
• Rollback. Try another

arrangement

Z3 Z3str2ok
conflicts

T

M	=	X	.	T Y	=	T	.	N

X Y
M N

X	.	Y	=	M	.	N

Theory-Aware Branching
l Traditional DPLL(T) architecture separates core (Boolean)

solver from theory solvers

l Theory solvers have contextual information which core
solver doesn't know

l Idea: use this to improve performance in core by preferring
“easier” or “more important” literals

THE Z3STR3 STRING SOLVER PAGE 11

Theory-Aware Branching
l Activity-based branching heuristic (similar to VSIDS):

branch on literal with highest activity
- Activity increased by conflicts, decays over time

l Theory solvers can increase or decrease activity of literals

l Advantage: give the core solver information regarding
the relative importance of each branch, allowing the
theory solver to exert additional control over the
search.

THE Z3STR3 STRING SOLVER PAGE 12

Theory-Aware Branching
l Consider the case where the string solver learns

X . Y = A . B
(for non-constant terms A, B, X, Y)

l The solver considers three possible arrangements:

- X = A, Y = B

- X = A . s1, s1 . Y = B for a fresh non-empty string s1

- X . s2 = A, Y = s2 . B for a fresh non-empty string s2

l The first arrangement is the simplest to check: no new variables

l Theory solver adds activity to the literal corresponding to this
arrangement; this prioritizes checking it

THE Z3STR3 STRING SOLVER PAGE 13

Theory-Aware Case Split
l A different way to use information from theory solvers to

guide search in the core

l Theory solver can create disjunctions of Boolean literals
which are pairwise mutual exclusive

l We refer to this as a “theory case split”

THE Z3STR3 STRING SOLVER PAGE 14

Theory-Aware Case Split
l Consider the case where the string solver learns:

X . Y = s = c1c2c3...cn
for variables X, Y and where each ci is a single character in
the string constant s

l There are n+1 possible ways in which we can split s over X
and Y

l Each arrangement represents a mutually exclusive case

THE Z3STR3 STRING SOLVER PAGE 15

Theory-Aware Case Split
l The Boolean abstraction hides the fact that these are

mutually exclusive cases

l Naive solution encodes O(n2) extra mutual exclusion clauses

l Congruence closure can “discover” this fact, but this can
result in unnecessary backtracking

l Previous work has investigated alternate encodings, e.g.
totalizers and lazy cardinality

l Our heuristic implements this mutual exclusion in the
inner loop of Z3's core solver in a theory-aware
manner

THE Z3STR3 STRING SOLVER PAGE 16

Theory-Aware Case Split
l Theory solver provides a set S of mutually-exclusive

literals to the core solver

l During branching, core solver checks whether the
current branching literal is in some set S. If yes, that
literal is assigned true and all other literals in S are
assigned false.

l During propagation, if the core solver assigns a literal in
some set S, the solver must check whether any two
literals L1, L2 in S have both been assigned true. If so, the
core solver generates conflict clause (not L1 or not L2)

THE Z3STR3 STRING SOLVER PAGE 17

Experimental Results

THE Z3STR3 STRING SOLVER PAGE 18

Kaluza benchmark results. Timeout = 20 seconds.

THE Z3STR3 STRING SOLVER

Experimental Results
Input Z3str3 Z3str2 CVC4 S3

result time (s) result time (s) result time (s) result time
(s)

pisa-000.smt2 sat 0.03 sat 0.25 sat 0.08 sat 0.07
pisa-001.smt2 sat 0.05 sat 0.19 sat 0.00 sat 0.07
pisa-002.smt2 sat 0.03 sat 0.10 sat 0.00 sat 0.05
pisa-003.smt2 unsat 0.02 unsat 0.02 unsat 0.01 unsat 0.02
pisa-004.smt2 unsat 0.02 unsat 0.05 unsat 0.39 unsat 0.05
pisa-005.smt2 sat 0.02 sat 0.14 sat 0.02 sat 0.04
pisa-006.smt2 unsat 0.03 unsat 0.05 unsat 0.32 unsat 0.05
pisa-007.smt2 unsat 0.02 unsat 0.05 unsat 0.37 unsat 0.05
pisa-008.smt2 sat 0.43 timeout 20.00 timeout 20.00 unsat X 4.73
pisa-009.smt2 sat 0.60 sat 0.62 sat 0.00 timeout 20.00
pisa-010.smt2 sat 0.02 sat 0.09 sat 0.00 unsat X 0.02
pisa-011.smt2 sat 0.03 sat 0.06 sat 0.00 unsat X 0.02

PISA benchmark results. Timeout = 20 seconds. X = incorrect response.

PAGE 19

THE Z3STR3 STRING SOLVER

Experimental Results

Input Z3str3 Z3str2 CVC4 S3
result time (s) result time (s) result time (s) result time (s)

t01.smt2 sat 0.18 sat 1.31 sat 0.01 sat 0.23
t02.smt2 sat 0.17 sat 0.38 sat 0.01 unknown 0.04
t03.smt2 sat 0.27 sat 9.54 sat 3.82 sat X 0.14
t04.smt2 sat 0.73 sat 4.45 timeout 20.00 sat X 0.10
t05.smt2 sat 0.57 sat 16.84 sat 3.87 sat X 0.55
t06.smt2 sat 0.02 sat 0.15 sat 0.01 sat 0.13
t07.smt2 sat 2.18 sat 0.25 sat 0.00 unknown 0.02
t08.smt2 sat 0.03 sat 0.25 sat 0.17 sat X 0.03

IBM AppScan benchmark results. Timeout = 20 seconds. X = incorrect response.

PAGE 20

THE Z3STR3 STRING SOLVER

Experimental Results
No heuristics Theory-aware

branching
Theory-aware
case split

Both heuristics

sat 35079 35147 35092 35147

unsat 11799 11799 11799 11799

unknown 221 230 223 223

timeout 185 108 170 115

Total time (s) 6252.26 6055.04 5027.35 4939.52

Performance comparison with individual heuristics.
Times taken over Kaluza benchmark. Timeout = 20 seconds.

Total time includes all solved, timeout, and unknown instances.

PAGE 21

Future Work
l Improved heuristics for mutually referential terms

(“overlapping variables”)

l String + bit-vector reasoning

l Regular expression support

l CFG support

THE Z3STR3 STRING SOLVER PAGE 22

Conclusions
l We present the Z3str3 string solver, newest in the Z3-str line

l Primary string solver used by Z3 official release

l Improved performance over predecessor and competitors on
majority of industrial benchmarks

l Heuristics are broadly applicable to SMT solvers

https://sites.google.com/site/z3strsolver

https://github.com/Z3prover/Z3

THE Z3STR3 STRING SOLVER PAGE 23

