Pretending to be an SMT Solver with Vampire (and How We Do Instantiation)

Giles Reger1, Martin Suda2, and Andrei Voronkov1,2

1School of Computer Science, University of Manchester, UK
2TU Wien, Vienna, Austria

SMT 2017 – Heidelberg, July 22, 2017
Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling
Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling
Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling

Reasoning with Theories

- since 2010: progressively adding support for theories
- since 2016: participating in SMT-COMP
Two Dimensions of Complexity

∀∃

\(\mathbb{Z}/\mathbb{R}: + - \ast/\)

select/store

gnd
Two Dimensions of Complexity

∀∃
Z/R: + − ∗ /
select/store
gnd
ATP
Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀ ∃

Z / R: + − ∗ /

select / store

gnd

ATP

SMT
Two Dimensions of Complexity

∀∃
Z/R: +− ∗ /
select/store
gnd
ATP
SMT
E
SPASS
VAMPIRE...
CVC4
veriT
Z3...

∀∃

ATP

E
SPASS
VAMPIRE...

CVC4
veriT
Z3...

SMT

select/store
Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗ /

select/store

gnd

ATP

SMT

select/store
Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: + − ∗ /

Instantiation...
select/store
gnd
ATP

SMT

\(Z/R: + - */ \) select/store
Reasoning with quantifiers and theories

Two Dimensions of Complexity

\(\forall \exists \)

Z/R: + − ∗ /

ATP

theory axioms

...

SMT

Instantiation

...

gnd

select/store

Z/R: + − ∗ /

select/store
Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃
Z/R: + − ∗ /
ATP
Instantiation...
theory axioms...
select/store
gnd
?

Z/R: + − */
select/store

SMT
Instantiation...
Outline

1. A Brief Introduction to Saturation-Based Proving
2. Theory Reasoning in Vampire
3. Theory Instantiation and Unification with Abstraction
4. Where We Currently Stand
Standard form of the input:

\[F := (Axiom_1 \land \ldots \land Axiom_n) \rightarrow Conjecture \]
Standard form of the input:

\[F := (Axiom_1 \land \ldots \land Axiom_n) \rightarrow Conjecture \]

1. Negate F to seek a refutation:

\[\neg F := Axiom_1 \land \ldots \land Axiom_n \land \neg Conjecture \]
Theorem Proving Pipeline in One Slide

Standard form of the input:

\[F := (\text{Axiom}_1 \land \ldots \land \text{Axiom}_n) \rightarrow \text{Conjecture} \]

1. Negate F to seek a refutation:

\[\neg F := \text{Axiom}_1 \land \ldots \land \text{Axiom}_n \land \neg \text{Conjecture} \]

2. Preprocess and transform \(\neg F \) to clause normal form (CNF)

\[S := \{ C_1, \ldots, C_n \} \]
Standard form of the input:

\[F := (Axiom_1 \land \ldots \land Axiom_n) \rightarrow Conjecture \]

1. Negate F to seek a refutation:

\[\neg F := Axiom_1 \land \ldots \land Axiom_n \land \neg Conjecture \]

2. Preprocess and transform \(\neg F \) to clause normal form (CNF)

\[S := \{C_1, \ldots, C_n\} \]

3. Saturate \(S \) with respect to the superposition calculus

aiming to derive the obvious contradiction \(\bot \)
Saturation = fixed-point computation

Given Clause Algorithm:

- set of active clauses is stored in indexing structures
- passive works like a priority queue
- the process is “explosive” in nature
Superposition rule

\[
\begin{align*}
L \simeq r \lor C_1 & \quad L[s]_p \lor C_2 \quad \text{or} \quad L \simeq r \lor C_1 \quad t[s]_p \otimes t' \lor C_2 \\
(L[r]_p \lor C_1 \lor C_2) & \theta \\
(t[r]_p \otimes t' \lor C_1 \lor C_2) & \theta
\end{align*}
\]

where \(\theta = \text{mgu}(l, s) \) and \(r \theta \not\preceq l \theta \) and, for the left rule \(L[s] \) is not an equality literal, and for the right rule \(\otimes \) stands either for \(\simeq \) or \(\not\simeq \) and \(t' \theta \not\preceq t[s] \theta \)
Controlling the Growth of the Search Space

Superposition rule

\[
\begin{align*}
I & \simeq r \lor C_1 & L[s]_p \lor C_2 \\
\frac{L[r]_p \lor C_1 \lor C_2}{\theta} & \lor \\
& \text{or} \\
I & \simeq r \lor C_1 & t[s]_p \otimes t' \lor C_2 \\
\frac{t[r]_p \otimes t' \lor C_1 \lor C_2}{\theta}
\end{align*}
\]

where \(\theta = \text{mgu}(l, s) \) and \(r\theta \not\preceq l\theta \) and, for the left rule \(L[s] \) is not an equality literal, and for the right rule \(\otimes \) stands either for \(\simeq \) or \(\not\simeq \) and \(t'\theta \not\preceq t[s]\theta \)

Saturation up to Redundancy

- redundant clauses can be safely removed
- subsumption - an example reduction:

remove \(C \) in the presence of \(D \) such that \(D\sigma \subseteq C \)
Controlling the Growth of the Search Space

Superposition rule

\[
\frac{l \simeq r \lor C_1 \quad L[s]_p \lor C_2}{(L[r]_p \lor C_1 \lor C_2) \theta} \quad \text{or} \quad \frac{l \simeq r \lor C_1 \quad t[s]_p \otimes t' \lor C_2}{(t[r]_p \otimes t' \lor C_1 \lor C_2) \theta},
\]

where \(\theta = \text{mgu}(l, s) \) and \(r\theta \not\preceq l\theta \) and, for the left rule \(L[s] \) is not an equality literal, and for the right rule \(\otimes \) stands either for \(\simeq \) or \(\not\simeq \) and \(t'\theta \not\preceq t[s]\theta \)

Saturation up to Redundancy

- redundant clauses can be safely removed
- subsumption - an example reduction:

\[
\text{remove } C \text{ in the presence of } D \text{ such that } D\sigma \subset C
\]

Completeness considerations
Outline

1. A Brief Introduction to Saturation-Based Proving
2. Theory Reasoning in Vampire
3. Theory Instantiation and Unification with Abstraction
4. Where We Currently Stand
Basic Support for Theories

- Normalization of interpreted operations, e.g.
 \[t_1 \geq t_2 \equiv \neg (t_1 < t_2) \quad a - b \equiv a + (-b) \]

- Evaluation of ground interpreted terms, e.g.
 \[f(1 + 2) \equiv f(3) \quad f(x + 0) \equiv f(x) \quad 1 + 2 < 4 \equiv true \]

- Balancing interpreted literals, e.g.
 \[4 = 2 \times (x + 1) \equiv (4 \div 2) - 1 = x \equiv x = 1 \]

- Interpreted operations treated specially by ordering
Adding Theory Axioms

\begin{align*}
& x + (y + z) = (x + y) + z & x + 0 = x \\
& x + y = y + x & -(x + y) = (-x + -y) \\
& -x = x & x + (-x) = 0 \\
& x \cdot 0 = 0 & x \cdot (y \cdot z) = (x \cdot y) \cdot z \\
& x \cdot 1 = x & x \cdot y = y \cdot x \\
& (x \cdot y) + (x \cdot z) = x \cdot (y + z) & \neg(x < y) \lor \neg(y < z) \lor \neg(x < z) \\
& x < y \lor y < x \lor x = y & \neg(x < y) \lor \neg(y < x + 1) \\
& \neg(x < y) \lor x + z < y + z & \neg(x < x) \\
& x < y \lor y < x + 1 \text{ (for ints)} & x = 0 \lor (y \cdot x)/x = y \text{ (for reals)}
\end{align*}

- a handcrafted set
- subsets added based on the signature
- ongoing research on how to tame them [IWIL17]
The AVATAR architecture [Voronkov14]

- modern architecture of first-order theorem provers
- combines saturation with SAT-solving
- efficient realization of the \textit{clause splitting rule}

\[
\forall x, z, w. \ s(x) \lor \neg r(x, z) \lor \neg q(w) \\
\text{share } x \text{ and } z \quad \text{is disjoint}
\]

- “propositional essence” of the problem delegated to SAT solver
The AVATAR architecture [Voronkov14]

- modern architecture of first-order theorem provers
- combines saturation with SAT-solving
- efficient realization of the *clause splitting rule*

\[\forall x, z, w. \ (s(x) \lor \neg r(x, z) \lor \neg q(w)) \]

share \(x\) and \(z\) *is disjoint*

- “propositional essence” of the problem delegated to SAT solver

AVATAR modulo Theories

- use an SMT solver instead of the SAT solver
- sub-problems considered are **ground-theory-consistent**
- implemented in Vampire using Z3
One Slightly Imprecise View of AVATAR

Vampire
- *Incremental* Theory Solver for Quantified Formulas

SMT Solver
- Theory Solver for Arithmetic
- Theory Solver for BitVectors
- Theory Solver for Uninterpreted Functions

Core
- Quantifier Instantiation

CDCL SAT Solver
...and please remember: Vampire is the boss here!
Outline

1. A Brief Introduction to Saturation-Based Proving
2. Theory Reasoning in Vampire
3. Theory Instantiation and Unification with Abstraction
4. Where We Currently Stand
Example

Consider the conjecture $(\exists x)(x + x \simeq 2)$ negated and clausified to

$$x + x \not\simeq 2.$$

It takes Vampire 15 s to solve using theory axioms deriving lemmas such as

$$x + 1 \simeq y + 1 \lor y + 1 \leq x \lor x + 1 \leq y.$$
Example

Consider the conjecture $(\exists x)(x + x \approx 2)$ negated and clausified to

$$x + x \not\approx 2.$$

It takes Vampire 15 s to solve using theory axioms deriving lemmas such as

$$x + 1 \approx y + 1 \lor y + 1 \leq x \lor x + 1 \leq y.$$

Heuristic instantiation would help, but normally any instance of a clause is immediately subsumed by the original!
Does Vampire Need Instantiation?

Example

Consider the conjecture $(\exists x)(x + x \approx 2)$ negated and clausified to

\[x + x \not\approx 2. \]

It takes Vampire 15s to solve using theory axioms deriving lemmas such as

\[x + 1 \approx y + 1 \lor y + 1 \leq x \lor x + 1 \leq y. \]

Heuristic instantiation would help, but normally any instance of a clause is immediately subsumed by the original!

Recall the abstraction rule

\[L[t] \lor C \implies x \not\approx t \lor L[x] \lor C, \]

where L is a theory literal, t a non-theory term, and x fresh.
The Theory Instantiation

Instantiation which makes some theory literals immediately false
The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

\[\frac{C}{(D[x])\theta} \text{ TheoryInst} \]

where \(T[x] \rightarrow D[x] \) is a (partial) abstraction of \(C \) and \(\theta \) a substitution such that \(T[x]\theta \) is valid in the underlying theory
The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

\[
\frac{C}{(D[x])\theta} \quad \text{TheoryInst}
\]

where \(T[x] \rightarrow D[x] \) is a (partial) abstraction of \(C \) and \(\theta \) a substitution such that \(T[x]\theta \) is valid in the underlying theory

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals \(L_1, \ldots, L_n \)
- Run an SMT solver on \(T[x] = \neg L_1 \land \ldots \land \neg L_n \)
- If the SMT solver returns a model, transform it into a substitution \(\theta \) and produce an instance
The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

\[
\frac{C}{(D[x])\theta} \text{ TheoryInst}
\]

where \(T[x] \rightarrow D[x] \) is a (partial) abstraction of \(C \) and \(\theta \) a substitution such that \(T[x]\theta \) is valid in the underlying theory

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals \(L_1, \ldots, L_n \)
- Run an SMT solver on \(T[x] = \neg L_1 \land \ldots \land \neg L_n \)
- If the SMT solver returns a model, transform it into a substitution \(\theta \) and produce an instance
Example

Consider two clauses

\[r(14y) \quad \neg r(x^2 + 49) \lor p(x) \]
Consider two clauses
\[
\begin{align*}
 r(14y) & \quad \neg r(x^2 + 49) \lor p(x) \\
\end{align*}
\]
We could fully abstract them to obtain:
\[
\begin{align*}
 r(u) \lor u \not\equiv 14y & \quad \neg r(v) \lor v \not\equiv x^2 + 49 \lor p(x),
\end{align*}
\]
Unification with Abstraction

Example

Consider two clauses

\[r(14y) \quad \neg r(x^2 + 49) \lor p(x) \]

We could fully abstract them to obtain:

\[r(u) \lor u \not\equiv 14y \quad \neg r(v) \lor v \not\equiv x^2 + 49 \lor p(x), \]

then resolve to get

\[u \not\equiv 14y \lor u \not\equiv x^2 + 49 \lor p(x) \]
Consider two clauses

\[r(14y) \quad \neg r(x^2 + 49) \lor p(x) \]

We could fully abstract them to obtain:

\[r(u) \lor u \not\equiv 14y \quad \neg r(v) \lor v \not\equiv x^2 + 49 \lor p(x), \]

then resolve to get

\[u \not\equiv 14y \lor u \not\equiv x^2 + 49 \lor p(x) \]

Finally, Theory Instantiation could produce

\[p(7) \]
Explicit abstraction may be harmful:
- fully abstracted clauses are typically much longer
- abstraction destroys ground literals
- theory part requires special treatment
Explicit abstraction may be harmful:

- fully abstracted clauses are typically much longer
- abstraction destroys ground literals
- theory part requires special treatment

Instead of full abstraction …

- incorporate the abstraction process into unification
- thus abstractions are “on demand” and lazy
- implemented by extending the substitution tree indexing
Outline

1. A Brief Introduction to Saturation-Based Proving
2. Theory Reasoning in Vampire
3. Theory Instantiation and Unification with Abstraction
4. Where We Currently Stand
SMT-COMP 2017 results – ∀∃ problems

<table>
<thead>
<tr>
<th>Logic</th>
<th>Vampire</th>
<th>VeriT</th>
<th>CVC4</th>
<th>Z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIA</td>
<td>36</td>
<td>27</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>AUFDTLIA</td>
<td>624</td>
<td>-</td>
<td>728</td>
<td>-</td>
</tr>
<tr>
<td>AUFLIA</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AUFLIRA</td>
<td>19778</td>
<td>19316</td>
<td>19766</td>
<td>19849</td>
</tr>
<tr>
<td>AUFNIRA</td>
<td>1072</td>
<td>-</td>
<td>1052</td>
<td>1031</td>
</tr>
<tr>
<td>LIA</td>
<td>229</td>
<td>170</td>
<td>388</td>
<td>388</td>
</tr>
<tr>
<td>LRA</td>
<td>1092</td>
<td>-</td>
<td>2048</td>
<td>2208</td>
</tr>
<tr>
<td>NIA</td>
<td>5</td>
<td>-</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>NRA</td>
<td>3803</td>
<td>-</td>
<td>3776</td>
<td>3805</td>
</tr>
<tr>
<td>UF</td>
<td>4317</td>
<td>3242</td>
<td>4125</td>
<td>2846</td>
</tr>
<tr>
<td>UFDT</td>
<td>2283</td>
<td>-</td>
<td>2503</td>
<td>-</td>
</tr>
<tr>
<td>UFDTLIA</td>
<td>75</td>
<td>-</td>
<td>73</td>
<td>-</td>
</tr>
<tr>
<td>UFIDL</td>
<td>55</td>
<td>55</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>UFLIA</td>
<td>7559</td>
<td>7518</td>
<td>7687</td>
<td>7221</td>
</tr>
<tr>
<td>UFLRA</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>UFNIA</td>
<td>2561</td>
<td>-</td>
<td>2189</td>
<td>2197</td>
</tr>
</tbody>
</table>
Thank you for your attention!