LibPoly: A Library for Reasoning about Polynomials

Dejan Jovanović Bruno Dutertre

SRI International

SMT Workshop 2017
OUTLINE

INTRODUCTION

LIBPOLY
- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION
Outline

Introduction

LibPoly
- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

Conclusion
Non-Linear Reasoning

Many applications

\[
T^X_1(t) = 3.2484 + 270.7t + 433.12t^2 - 324.83999t^3
\]

\[
T^Y_1(t) = 15.1592 + 108.28t + 121.2736t^2 - 649.67999t^3
\]

\[
T^Z_1(t) = 38980.8 + 5414t - 21656t^2 + 32484t^3
\]

\[
T^X_2(t) = 1.0828 - 135.35t + 234.9676t^2 + 3248.4t^3
\]

\[
T^Y_2(t) = 18.40759 - 230.6364t - 121.2736t^2 - 649.67999t^3
\]

\[
T^Z_2(t) = 40280.15999 - 10828t + 24061.9816t^2 - 32484t^3
\]

\[
D = 5 \quad H = 1000 \quad 0 \leq t \leq \frac{1}{20}
\]

\[
|T^Z_1(t) - T^Z_2(t)| \leq H \quad (T^X_1(t) - T^X_2(t))^2 + (T^Y_1(t) - T^Y_2(t))^2 \leq D^2
\]

Non-linear reasoning

Many applications

\[T_1^X(t) = 3.2484 + 270.7t + 433.12t^2 - 324.8399t^3 \]
\[T_1^Y(t) = 15.1592 + 108.28t + 121.2736t^2 - 649.67999t^3 \]
\[T_1^Z(t) = 38980.8 + 5414t - 21656t^2 + 32484t^3 \]

Run SMT solver

\[t \mapsto \frac{319}{16384} \approx 0.019470215 \]

\[x^2 + 3248.4t^3 \]
\[36t^2 - 649.67999t^3 \]
\[9816t^2 - 32484t^3 \]

\[D = 5 \quad H = 1000 \quad 0 \leq t \leq \frac{1}{20} \]

\[|T_1^X(t) - T_2^X(t)| \leq H \quad (T_1^X(t) - T_2^X(t))^2 + (T_1^Y(t) - T_2^Y(t))^2 \leq D^2 \]

Example from Narkawicz, Muž, Formal Verification of Conflict Detection Algorithms for Arbitrary Trajectories, 2012
Popular techniques in SMT (QF_NRA):

- Interval reasoning: RASAT
- Linear reasoning + model-based refinement: cvc4
- DPLL(T) + VTS: veriT
- DPLL(T) + CAD: smtrat, veriT
- MCSAT + CAD: Z3, yices2
Non-Linear Reasoning

SMT Techniques

Popular techniques in SMT (QF_NRA):

- Interval reasoning: RASAT
- Linear reasoning + model-based refinement: CVC4
- DPLL(T) + VTS: VERIT
- DPLL(T) + CAD: SMTRAT, VERIT
- MCSAT + CAD: Z3, YICES2

Cylindrical Algebraic Decomposition (CAD):

- complete method, currently state-of-the-art;
- requires advanced polynomial operations.
The graph compares the cumulative time (in seconds) for solving benchmarks with various SMT solvers. The solvers include yices2, z3, verit+rasat+redlog, cvc4, and smtrat. The x-axis represents the number of benchmarks solved, and the y-axis shows the cumulative time. The data is presented on a logarithmic scale, indicating that the time increases significantly as the number of benchmarks grows.
Non-Linear Reasoning
CAD-based reasoning

1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanations:
 - principal subresultant coefficients.
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

HOW TO GET THESE?
- Use an existing library
Non-Linear Reasoning

CAD-based reasoning

1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

How to get these?
- Use an existing library 😞
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

How to get these?
- Use an existing library 😞
- Use a computer algebra system
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

How to get these?
- Use an existing library 😞
- Use a computer algebra system 😞
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

How to get these?
- Use an existing library 😞
- Use a computer algebra system 😞
- Borrow and adapt code
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

HOW TO GET THESE?

- Use an existing library 😞
- Use a computer algebra system 😞
- Borrow and adapt code 😞
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

HOW TO GET THESE?

- Use an existing library 😞
- Use a computer algebra system 😞
- Borrow and adapt code 😞
- Implement yourself 😞
1. Representation of polynomials.
2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
4. Projection and symbolic explanation:
 - principal subresultant coefficients.

How to get these?
- Use an existing library 😞
- Use a computer algebra system 😞
- Borrow and adapt code 😞
- Implement yourself 😞
- Use LIBPOLY 😊.
INTRODUCTION

LibPoly
- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION
LibPoly

- Open source: https://github.com/SRI-CSL/libpoly.
- Permissive License: LGLP
- Lightweight: Implemented in C, 15KLOC.
- Only depends on GMP.
- Basis for non-linear reasoning in YICES2.
Polynomial Basics

- Polynomials with coefficients over \(\mathbb{Z}\).
- \(\mathbb{Z}[x_1, \ldots, x_n]\) are polynomials over variables \(\vec{x} = \langle x_1, \ldots, x_n \rangle\).
- For \(f \in \mathbb{Z}[\vec{y}, x]\):

\[
 f(\vec{y}, x) = a_m \cdot x^{d_m} + a_{m-1} \cdot x^{d_{m-1}} + \cdots + a_1 \cdot x^{d_1} + a_0
\]

- \(a_m \neq 0, a_i \in \mathbb{Z}[\vec{y}], d_m > \cdots > d_1 > 0\)
- \(x\) is the top variable
- \(d_m\) is the degree of \(f\)
- \(a_m\) is the leading coefficient
ASSIGNMENT AND EVALUATION

An assignment assigns variables to values

\[m = \{ x \mapsto 1, y \mapsto 2, z \mapsto 3 \} . \]

We can evaluate the sign of a polynomial \(f \in \mathbb{Z}[x, y, z] \)

\[\text{sgn}(f, m) \in \{ +1, 0, -1 \} . \]
Zeros of a Polynomial (Root Isolation)

Root Isolation

For $f \in \mathbb{Z}[\vec{y}, x]$ and an assignment $\vec{y} \mapsto \vec{v}$, find solutions to $f(\vec{v}, x) = 0$.

Example

- $m_1 = \{\}$
- $m_2 = \{x \mapsto 1\}$
- $m_3 = \{x \mapsto 1, y \mapsto \sqrt{2}\}$

- $f_1(x) = x - 1$
- $f_2(x, y) = y^2 - 2x$
- $f_3(x, y, z) = z^3 - y^2 - x$
Example (Sign Table)

<table>
<thead>
<tr>
<th></th>
<th>$(-\infty,-1)$</th>
<th>$[-1]$</th>
<th>$(-1,0)$</th>
<th>$[0]$</th>
<th>$(0,1)$</th>
<th>$[1]$</th>
<th>$(1,2)$</th>
<th>$[2]$</th>
<th>$(2,\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 - 1$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$x(x-2)$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
</tbody>
</table>
Sign Table: What is it?

Example (Sign Table)

<table>
<thead>
<tr>
<th></th>
<th>$(-\infty, -1)$</th>
<th>$[-1]$</th>
<th>$(-1, 0)$</th>
<th>$[0]$</th>
<th>$(0, 1)$</th>
<th>$[1]$</th>
<th>$(1, 2)$</th>
<th>$[2]$</th>
<th>$(2, +\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 - 1$</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$x(x - 2)$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Sign Table

- Partition of \mathbb{R} into intervals $I_1, \ldots I_n$.
- Picking an **arbitrary** sample value $v \in I_k$ is enough to evaluate signs.
- It completely characterizes the behavior of the polynomials.
Can we do multivariate?

Example (Multivariate)

\[x^2 + y^2 - 1 \leq 0 \quad , \quad (x - 1)^2 + y^2 - 1 \leq 0 . \]
Can we do multivariate?

Example (Multivariate)

\[x^2 + y^2 - 1 \leq 0, \quad (x - 1)^2 + y^2 - 1 \leq 0. \]

Recursive Sign Table

1. Pick order, say \(x < y \).
2. \(P_x \): polynomials in \(x \).
3. \(P_y \): polynomials in \(x, y \).
4. Construct sign table \(T_x \) for \(P_x \).
5. For each sample \(v \in T_x \):
 - Construct sign table \(T_{v,y} \) for \(P_y \).
Can we do multivariate?

Recursive Sign Table

1. Pick order, say \(x < y \).
2. \(P_x \): polynomials in \(x \).
3. \(P_y \): polynomials in \(x, y \).
4. Construct sign table \(T_x \) for \(P_x \).
5. For each sample \(v \in T_x \):
 - Construct sign table \(T_{v,y} \) for \(P_y \).

Example (Multivariate)

\[
x^2 + y^2 - 1 \leq 0 , \quad (x - 1)^2 + y^2 - 1 \leq 0 .
\]
Can we do multivariate?

Example (How to Get the Extra Polynomials?)

We added extra polynomials

\[x + 1, \quad x, \quad 2x - 1, \quad x - 1, \quad x - 2. \]

Can we find these polynomials automatically?
Given a set of polynomials $A = \{f_1, \ldots, f_m\} \subset \mathbb{Z}[\vec{y}, x]$, the x-projection of A is

$$P(A, x) = \bigcup_{f \in A} \text{coeff}(f, x) \cup \bigcup_{f \in A} \text{psc}(g, g', x) \cup \bigcup_{i<j} \text{psc}(g_i, g_j, x).$$
Definition (Projection)

Given a set of polynomials $A = \{f_1, \ldots, f_m\} \subset \mathbb{Z}[\vec{y}, x]$, the x-projection of A is

$$P(A, x) = \bigcup_{f \in A} \text{coeff}(f, x) \cup \bigcup_{f \in A} \text{psc}(g, g'_x, x) \cup \bigcup_{i<j} \text{psc}(g_i, g_j, x).$$

coeff(f, x): Coefficients

Signs of coefficients invariant on $S \Rightarrow$ degrees of $f \in A$ invariant on $S.$
Definition (Projection)

Given a set of polynomials \(A = \{f_1, \ldots, f_m\} \subset \mathbb{Z}[\vec{y}, x] \), the x-projection of \(A \) is

\[
P(A, x) = \bigcup_{f \in A} \text{coeff}(f, x) \cup \bigcup_{f \in A, \ g \in R^*(f, x)} \text{psc}(g, g_x', x) \cup \bigcup_{i < j, \ g_i \in R^* (f_i, x), \ g_j \in R^* (f_j, x)} \text{psc}(g_i, g_j, x).
\]

\(R^*(f, x) \): Reductums include the “right degree” polynomials

\[
f = \sum_{k=0}^{n} a_k x^k, \quad R(f, x) = \sum_{k=0}^{n-1} a_k x^k, \quad R^*(f, x) = \{f, R(f), R(R(f)), \ldots\}.
\]
Definition (Projection)

Given a set of polynomials $A = \{f_1, \ldots, f_m\} \subset \mathbb{Z}[\bar{y}, x]$, the x-projection of A is

$$P(A, x) = \bigcup_{f \in A} \text{coeff}(f, x) \cup \bigcup_{f \in A} \text{psc}(g, g'_x, x) \cup \bigcup_{i<j} \text{psc}(g_i, g_j, x).$$

Principal Subresultant Coefficients (PSC)

Signs of PSC invariant on $S \Rightarrow$ degree of \gcd invariant on S.
Given a set of polynomials $A \subseteq \mathbb{Z}[x_1, \ldots, x_n]$:

- Project variable x_n.
- Project variable x_{n-1}.
- ...
LIFTING: CONSTRUCT THE SIGN TABLE

Construct the table variable by variable:

- Isolate roots of x_1, pick a value in an interval.
- Isolate roots of x_2, pick a value in an interval.
- ...
Construct the table variable by variable:

- Isolate roots of x_1, pick a value in an interval.
- Isolate roots of x_2, pick a value in an interval.
- ...
Polynomial: $x^2 + y^2 - 1$.
Projection: $x^2 - 1$.
INTRODUCTION

LIBPOLY
- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION
A library for non-linear reasoning:

- Permissive License: LGLP
- Ubuntu and Brew packages incoming.
- Lightweight: Implemented in C, around 15KLOC.
- Only depends on GMP.
- Basis for non-linear reasoning in YICES2.
- Both for traditional CAD and MCSAT-style CAD.
A library for non-linear reasoning:

- Permissive License: LGLP
- Ubuntu and Brew packages incoming.
- Lightweight: Implemented in C, around 15KLOC.
- Only depends on GMP.
- Basis for non-linear reasoning in YICES2.
- Both for traditional CAD and MCSAT-style CAD.

Thank you!