

Satisfiability Modulo
Transcendental Functions

via Incremental Linearization

Alberto Griggio

Fondazione Bruno Kessler, Trento, Italy

Joint work with A. Irfan, A. Cimatti, M. Roveri, R. Sebastiani

Executive Summary

 Main idea

 Abstract transcendental functions with uninterpreted functions

 Incrementally add upper- and lower- bound linear lemmas

 Tangent and secant lines
 Added to refine spurious models

 Challenges

 Irrational values: transcendental functions give irrational outputs
to (most) rational inputs

 Linearization requires calculation of slope at arbitrary point, which
is not straightforward

 Handling periodicity (of trigonometric functions)

 Detecting SAT

Some Math Background

 Transcendental function : doesn’t satisfy a polynomial equation

 We assume to be continuous and (n-times) differentiable

 Tangent line to at point :

 Secant line to between and :

 Concavity: sign of the second derivative

 Taylor theorem:

Main Algorithm

precision

initial abstraction

return UNSAT

return SAT

Initial Abstraction

 Replace every occurrence of a transcendental function
with a corresponding uninterpreted function

 Add some basic lemmas about the behaviour of the function

 E.g. for exponential

Spuriousness Check

 Check that the model is consistent wrt

 Intuitively, check

 Problem: is typically irrational

 Can’t check precisely

 Solution: check whether is close enough to

 use Taylor’s theorem to compute polynomial bounds

 Depend on the current precision
 Model is definitely spurious if

 or

Spuriousness Check and Refinement

while true:
 e := 10-precision

 L := {}

Spuriousness Check and Refinement

while true:
 e := 10-precision

 L := {}
 for all tf(x) in :
 c :=
 P

l
(x), P

u
(x) := poly-approx(tf(x),c,e)

 if or :
 L := L + get-lemmas-point(tf(x), ,P

l
(x),P

u
(x))

Spuriousness Check and Refinement

while true:
 e := 10-precision

 L := {}
 for all tf(x) in :
 c :=
 P

l
(x), P

u
(x) := poly-approx(tf(x),c,e)

 if or :
 L := L + get-lemmas-point(tf(x), ,P

l
(x),P

u
(x))

 if L is empty:
 if check-sat(,):
 return true
 else:
 precision += 1
 else:
 return false, L

Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower)
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial
gives lower (upper) bound

Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower)
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial
gives lower (upper) bound

Spurious
Point

Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower)
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial
gives lower (upper) bound

Spurious
Point

Tangent
Refinement

Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower)
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial
gives lower (upper) bound

Spurious
Point

Tangent
Refinement

Precision

Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower)
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial
gives lower (upper) bound

Spurious
Point

Tangent
Refinement

Precision
The concavity of the lower

and upper polynomials
should be equal to the

concavity of the function in
the interval of interest

Refinement: Exponential Function

 Using Taylor’s theorem:

 Case x = 0:
 Lower Polynomial:
 Upper Polynomial:

 Case x < 0:
 Lower Polynomial: when n is odd

 Upper Polynomial: when n is even

 Case x > 0:
 Lower Polynomial:

 Upper Polynomial:

Sin Function

 We introduce a symbolic variable with initial rational bounds

 Reasoning is split depending on two periods:
 Base Period:
 Extended Period: when not in the base period

 For each sin(x), new application sin(yx)
 yx fresh (called a base variable)
 The domain of yx is in the base period
 sin(x) and sin(yx) are equal in the base period

Sin Function

 Tangent and secant refinement only with base variables

 Concavity check in the base period is easy
 Case x > 0: concavity is negative
 Case x < 0: concavity is positive

 Using Taylor’s theorem and current precision
 Lower Polynomial:

 Upper Polynomial:

Sin Function – Extended periods

 Shift to the base period, and compare with
 Shift calculation

 If the values differ, we perform shift refinement
 Relate the extended period with the base period

(after appropriate shift)

 Note that the shift is symbolic in
 Ensure soundness

Check for SAT

 We know

so, is a candidate
solution

 Sufficient condition for sat:
validity of

Replace ’s with fresh vars and check validity of the
first-order formula

Implementation and Experiments

 887 BMC Benchmarks (also
scaled)
 Hand-crafted benchmarks
 Discretized Hybrid System

benchmarks
 HyComp benchmarks
 iSAT benchmarks
 HyST benchmarks
 HARE benchmarks

 681 MetiTarski Benchmarks
(also scaled)

 944 dReal Benchmarks

 Tools
 MathSAT
 MetiTarski
 iSAT3
 dReal

 Prototype Implementation in MathSAT + PySMT

Results

Results

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Experimental Evaluation
	Slide 22
	Slide 23
	Slide 24

