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Executive Summary

 Main idea

 Abstract transcendental functions with uninterpreted functions

 Incrementally add upper- and lower- bound linear lemmas

 Tangent and secant lines
 Added to refine spurious models

 Challenges

 Irrational values: transcendental functions give irrational outputs 
to (most) rational inputs

 Linearization requires calculation of slope at arbitrary point, which 
is not straightforward

 Handling periodicity (of trigonometric functions)

 Detecting SAT



  

Some Math Background

 Transcendental function         : doesn’t satisfy a polynomial equation

 We assume to be continuous and (n-times) differentiable

 Tangent line to         at point    :

 Secant line to          between     and    :

 Concavity: sign of the second derivative

 Taylor theorem:

                      



  

Main Algorithm

precision

initial abstraction

return UNSAT

return SAT



  

Initial Abstraction

 Replace every occurrence of a transcendental function
with a corresponding uninterpreted function

 Add some basic lemmas about the behaviour of the function

 E.g. for exponential



  

Spuriousness Check

 Check that the model is consistent wrt 

 Intuitively, check

 Problem:              is typically irrational

 Can’t check precisely

 Solution: check whether               is close enough to 

 use Taylor’s theorem to compute polynomial bounds 

 Depend on the current precision
 Model is definitely spurious if      

                                    or



  

Spuriousness Check and Refinement

while true:
  e := 10-precision

  L := {}
  



  

Spuriousness Check and Refinement

while true:
  e := 10-precision

  L := {}
  for all tf(x) in  :    
    c := 
    P

l
(x), P

u
(x) := poly-approx(tf(x),c,e)

    if                or               :         
      L := L + get-lemmas-point(tf(x), ,P

l
(x),P

u
(x))

  



  

Spuriousness Check and Refinement

while true:
  e := 10-precision

  L := {}
  for all tf(x) in  :    
    c := 
    P

l
(x), P

u
(x) := poly-approx(tf(x),c,e)

    if                or               :
      L := L + get-lemmas-point(tf(x), ,P

l
(x),P

u
(x))

  if L is empty:
    if check-sat( ,  ):
      return true
    else:
      precision += 1
  else:
    return false, L



Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower) 
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial 
gives lower (upper) bound
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Refinement via Linearization – Basic Idea

 Use upper and lower polynomials for linearization
 If the concavity of the function is negative (positive):

 Tangent Refinement: Tangent Line to the upper (lower) 
polynomial gives upper (lower) bound

 Secant Refinement: Secant Line to the lower (upper) polynomial 
gives lower (upper) bound

Spurious 
Point

Tangent 
Refinement

Precision
The concavity of the lower 

and upper polynomials 
should be equal to the 

concavity of the function in 
the interval of interest



Refinement: Exponential Function

 Using Taylor’s theorem:

 Case x = 0:
 Lower Polynomial: 
 Upper Polynomial:

 Case x < 0:
 Lower Polynomial:                                    when n is odd

 Upper Polynomial:                                    when n is even

 Case x > 0:
 Lower Polynomial:

 Upper Polynomial:



Sin Function

 We introduce a symbolic     variable with initial rational bounds

 Reasoning is split depending on two periods:
 Base Period: 
 Extended Period: when not in the base period

 For each sin(x), new application sin(yx)
 yx fresh (called a base variable)
 The domain of yx is in the base period
 sin(x) and sin(yx) are equal in the base period



Sin Function

 Tangent and secant refinement only with base variables

 Concavity check in the base period is easy
 Case x > 0: concavity is negative
 Case x < 0: concavity is positive

 Using Taylor’s theorem and current precision
 Lower Polynomial:

 Upper Polynomial:



Sin Function – Extended periods

 Shift        to the base period, and compare with 
 Shift calculation

 If the values differ, we perform shift refinement
 Relate the extended period with the base period 

(after appropriate shift)

 Note that the shift is symbolic in
 Ensure soundness



  

Check for SAT

 We know

so,    is a candidate 
solution

 Sufficient condition for sat:
validity of

Replace               ’s  with fresh vars     and check validity of the 
first-order formula



Implementation and Experiments

 887 BMC Benchmarks (also 
scaled)
 Hand-crafted benchmarks
 Discretized Hybrid System 

benchmarks
 HyComp benchmarks
 iSAT benchmarks
 HyST benchmarks
 HARE benchmarks

 681 MetiTarski Benchmarks 
(also scaled)

 944 dReal Benchmarks

 Tools
 MathSAT
 MetiTarski
 iSAT3 
 dReal

 Prototype Implementation in MathSAT + PySMT



Results



Results



  

Thank You
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