

Satisfiability Modulo Transcendental Functions via Incremental Linearization

Alberto Griggio

Fondazione Bruno Kessler, Trento, Italy

Joint work with A. Irfan, A. Cimatti, M. Roveri, R. Sebastiani

Main idea

- Abstract transcendental functions with uninterpreted functions
- Incrementally add upper- and lower- bound linear lemmas
 - Tangent and secant lines
 - Added to refine spurious models

Challenges

- Irrational values: transcendental functions give irrational outputs to (most) rational inputs
- Linearization requires calculation of slope at arbitrary point, which is not straightforward
- Handling periodicity (of trigonometric functions)
- Detecting SAT

- Transcendental function f(x): doesn't satisfy a polynomial equation
 - We assume to be continuous and (n-times) differentiable
- Tangent line to f(x) at point a: $T_{f,a}(x) \stackrel{\text{def}}{=} f(a) + \frac{d}{dx}f(a) * (x a)$

Secant line to f(x) between \underline{a} and \underline{b} :

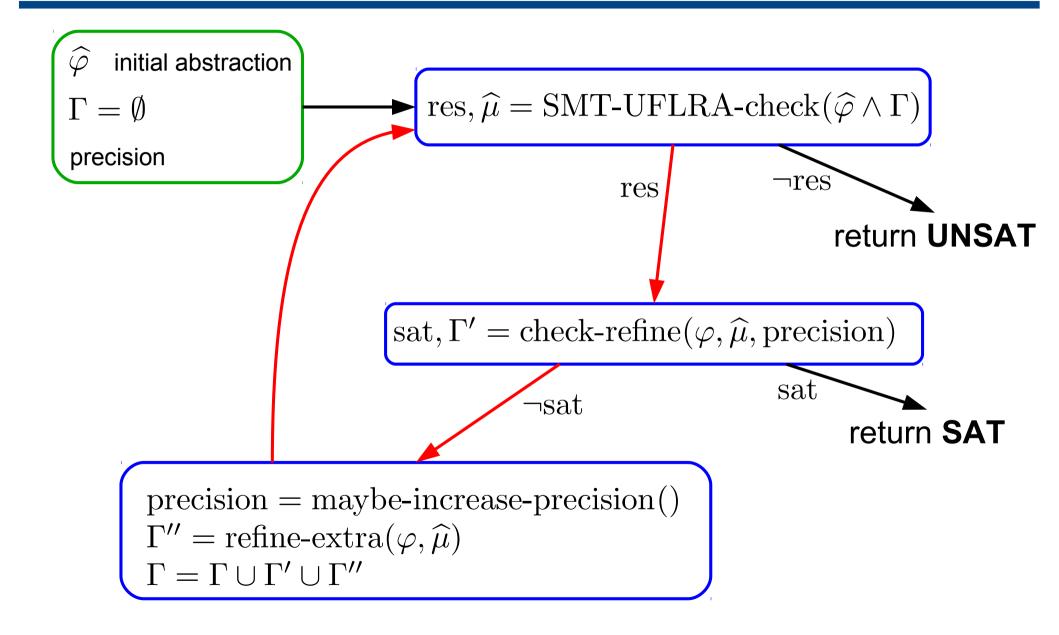
$$S_{f,a,b}(x) \stackrel{\text{def}}{=} \frac{f(a) - f(b)}{a - b} * (x - a) + f(a)$$

Concavity: sign of the second derivative

• Taylor theorem:
$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} * (x-a)^{i} + R_{n+1,f(a)}(x)$$
$$R_{n+1,f(a)}(x) \leq \max_{\substack{c \in [\min(a,x), \max(a,x)]}} (|f^{(n+1)}(c)|) * \frac{|(x-a)^{n+1}|}{(n+1)!}$$
$$\overline{R_{n+1,f(a)}}^{u}(x)$$

$$P_{n,f(a)}(x) - \overline{R_{n+1,f(a)}}^{u}(x) \le f(x) \le P_{n,f(a)}(x) + \overline{R_{n+1,f(a)}}^{u}(x)$$

Main Algorithm

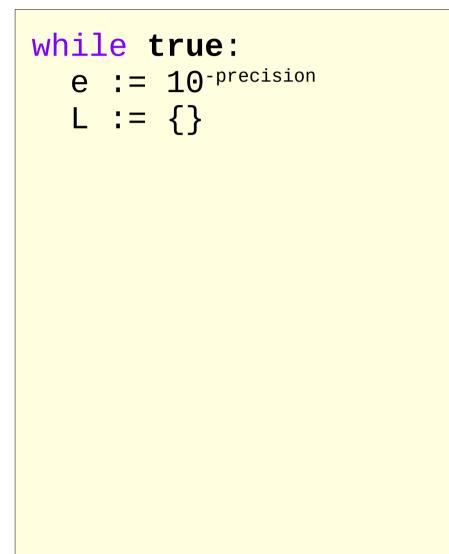


- Replace every occurrence of a transcendental function tf(x) with a corresponding uninterpreted function uf(x)
- Add some basic lemmas about the behaviour of the function
 - E.g. for exponential

$$\begin{split} \exp(x) &> 0\\ (x = 0 \leftrightarrow \exp(x) = 1) \land (x < 0 \leftrightarrow \exp(x) < 1) \land (x > 0 \leftrightarrow \exp(x) > 1)\\ x = 0 \lor \exp(x) > x + 1 \end{split}$$

- Check that the model is consistent wrt tf(x)
 - Intuitively, check $\widehat{\mu}[uf(x)] = tf(\widehat{\mu}[x])$
- Problem: $tf(\widehat{\mu}[x])$ is typically irrational
 - Can't check precisely
- Solution: check whether $\widehat{\mu}[uf(x)]$ is close enough to $tf(\widehat{\mu}[x])$
 - use Taylor's theorem to compute polynomial bounds $P_l(\widehat{\mu}[x]) \leq tf(\widehat{\mu}[x]) \leq P_u(\widehat{\mu}[x])$
 - Depend on the current precision
 - Model is definitely spurious if $\widehat{\mu}[uf(x)] < P_l(\widehat{\mu}[x]) \quad \text{or} \quad \widehat{\mu}[uf(x)] > P_u(\widehat{\mu}[x])$

Spuriousness Check and Refinement

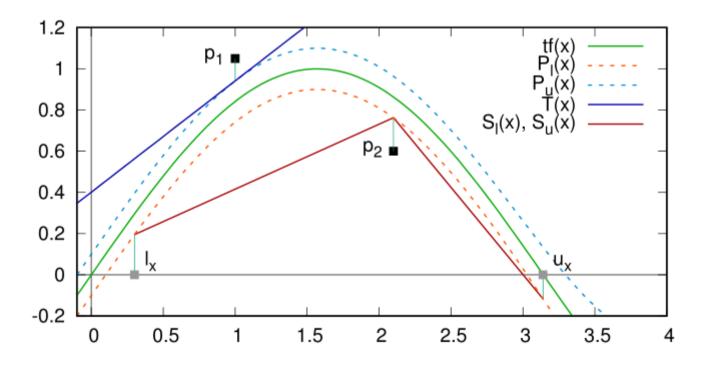


while true:
e :=
$$10^{-\text{precision}}$$

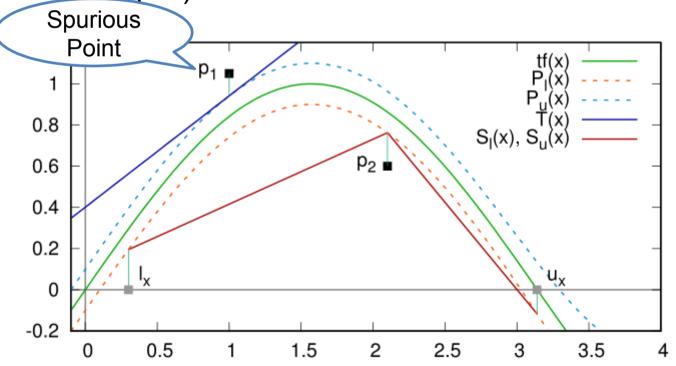
L := {}
for all tf(x) in φ :
c := $\hat{\mu}[x]$
P₁(x), P_u(x) := poly-approx(tf(x), c, e)
if $\hat{\mu}[uf(x)] < P_l(\hat{\mu}[x])$ or $\hat{\mu}[uf(x)] > P_u(\hat{\mu}[x])$:
L := L + get-lemmas-point(tf(x), $\hat{\mu}$, P₁(x), P_u(x))


```
while true:
   e := 10<sup>-precision</sup>
   L := \{\}
   for all tf(x) in \varphi:
      C := \widehat{\mu}[x]
      P_1(x), P_1(x) := poly-approx(tf(x), c, e)
      if \widehat{\mu}[uf(x)] < P_l(\widehat{\mu}[x]) or \widehat{\mu}[uf(x)] > P_u(\widehat{\mu}[x]):
         L := L + get-lemmas-point(tf(x),\hat{\mu}, P<sub>1</sub>(x), P<sub>1</sub>(x))
   if L is empty:
      if check-sat(\varphi, \hat{\mu}):
         return true
      else:
         precision += 1
   else:
      return false, L
```

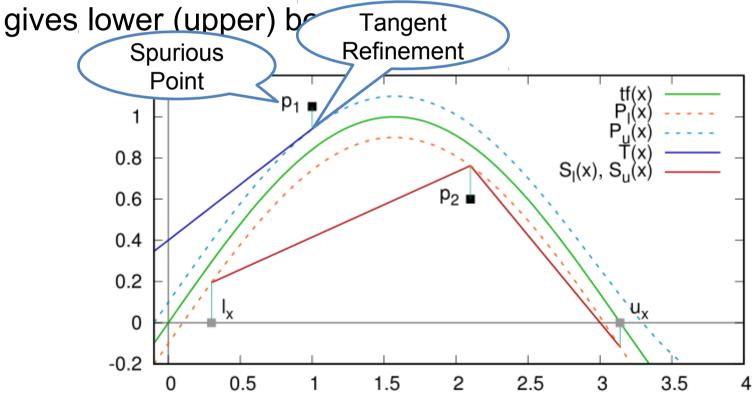
- Use upper and lower polynomials for linearization
- If the concavity of the function is negative (positive):
 - Tangent Refinement: Tangent Line to the upper (lower) polynomial gives upper (lower) bound
 - Secant Refinement: Secant Line to the lower (upper) polynomial gives lower (upper) bound



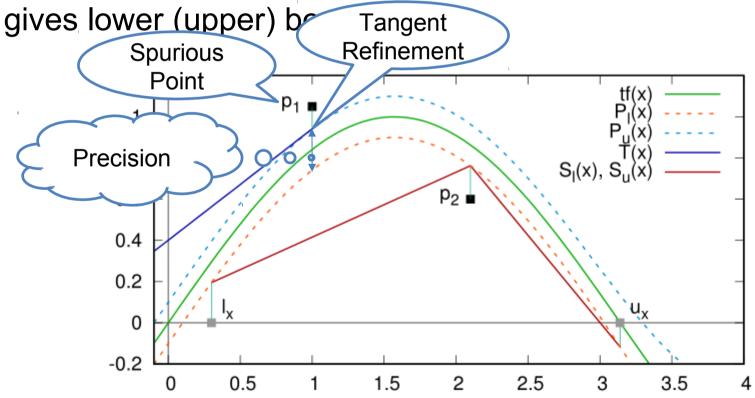
- Use upper and lower polynomials for linearization
- If the concavity of the function is negative (positive):
 - Tangent Refinement: Tangent Line to the upper (lower) polynomial gives upper (lower) bound
 - Secant Refinement: Secant Line to the lower (upper) polynomial gives lower (upper) bound



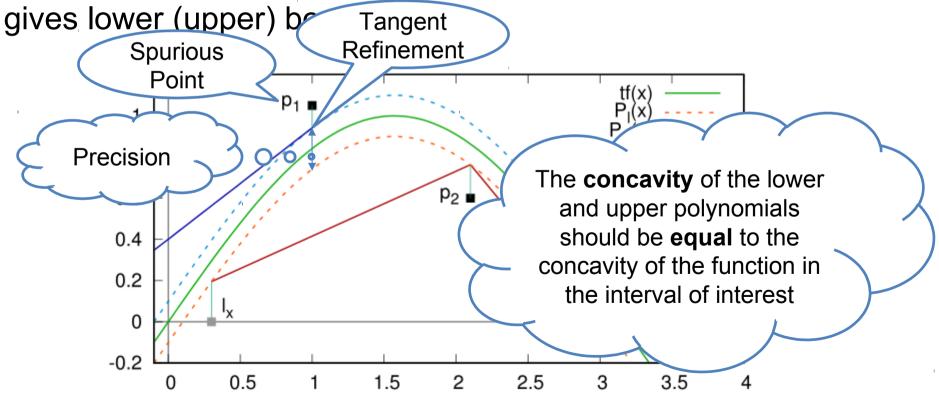
- Use upper and lower polynomials for linearization
- If the concavity of the function is negative (positive):
 - Tangent Refinement: Tangent Line to the upper (lower) polynomial gives upper (lower) bound
 - Secant Refinement: Secant Line to the lower (upper) polynomial



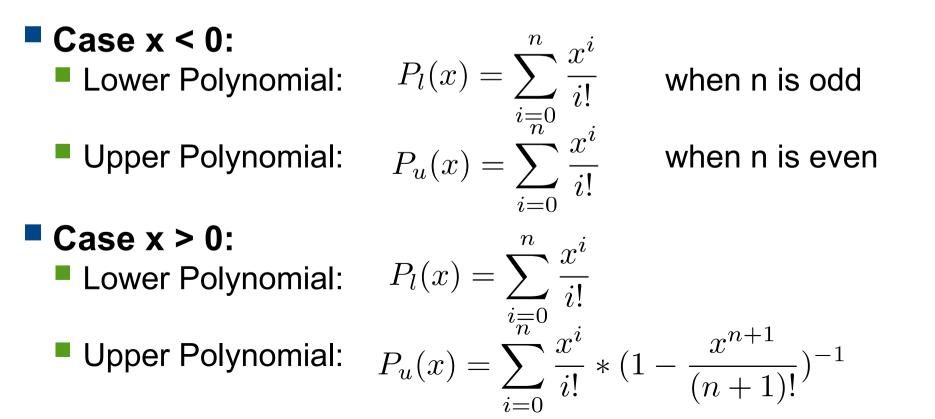
- Use upper and lower polynomials for linearization
- If the concavity of the function is negative (positive):
 - Tangent Refinement: Tangent Line to the upper (lower) polynomial gives upper (lower) bound
 - Secant Refinement: Secant Line to the lower (upper) polynomial



- Use upper and lower polynomials for linearization
- If the concavity of the function is negative (positive):
 - Tangent Refinement: Tangent Line to the upper (lower) polynomial gives upper (lower) bound
 - Secant Refinement: Secant Line to the lower (upper) polynomial



- Using Taylor's theorem:
- Case x = 0:
 - Lower Polynomial: $P_l(0) = 1$ Upper Polynomial: $P_u(0) = 1$



Sin Function

We introduce a symbolic $\hat{\pi}$ variable with initial rational bounds $\frac{333}{106} < \hat{\pi} < \frac{355}{113}$

Reasoning is split depending on two periods:

Base Period:
$$-\hat{\pi}$$
 to $\hat{\pi}$

- Extended Period: when not in the base period
- For each sin(x), new application $sin(y_x)$
 - y_x fresh (called a base variable)
 - The domain of y_x is in the base period
 - sin(x) and sin(y_x) are equal in the base period

 $(-\hat{\pi} \le y_x \le \hat{\pi}) \land ((-\hat{\pi} \le x \le \pi) \to y_x = x) \land fsin(x) = fsin(y_x)$

Sin Function

2(n+1)

- Tangent and secant refinement only with base variables
- Concavity check in the base period is easy
 Case x > 0: concavity is negative
 - Case x < 0: concavity is positive</p>
- Using Taylor's theorem and current precision
 Lower Polynomial: $n (-1)^{k} * y_{x}^{2k+1}$

$$P_l(y_x) = \sum_{k=0}^{n} \frac{(-1)^k * y_x^{2k+1}}{(2k+1)!} - \frac{y_x^{2(n+1)}}{(2(n+1))!}$$

Upper Polynomial:

$$P_u(y_x) = \sum_{k=0}^n \frac{(-1)^k * y_x^{2k+1}}{(2k+1)!} + \frac{y_x^{2(n+1)}}{(2(n+1))!}$$

- Shift $\hat{\mu}[x]$ to the base period, and compare with $\hat{\mu}[y_x]$
 - Shift calculation $s = (\hat{\mu}[x] + \hat{\mu}[\hat{\pi}])/(2 \cdot \hat{\mu}[\hat{\pi}])$
- If the values differ, we perform shift refinement
 - Relate the extended period with the base period (after appropriate shift)

$$(\hat{\pi} * (2s - 1) \le x \le \hat{\pi} * (2s + 1)) \to (y_x = x - 2s * \hat{\pi})$$

- **Note that the shift is symbolic in** $\hat{\pi}$
 - Ensure soundness

Check for SAT

• We know $\widehat{\mu} \models \widehat{\varphi}$ 1.2 1 $P_l(\widehat{\mu}[x_i]) \le \widehat{\mu}[uf(x_i)] \le P_u(\widehat{\mu}[x_i])$ 0.8 0.6 so, $\hat{\mu}$ is a candidate 0.4 solution 0.2 0 -0.2 0.5 1.5 2 2.5 3 3.5 Ω 1 Sufficient condition for sat:

Sufficient condition for sativation validity of

 $\forall uf \in \widehat{\varphi}. \left(\bigwedge_i P_l(\widehat{\mu}[x_i]) \leq uf(\widehat{\mu}[x]) \leq P_u(\widehat{\mu}[x]) \right) \to \widehat{\varphi}\{X \mapsto \widehat{\mu}[X]\}$

Replace $uf(\hat{\mu}[x_i])$'s with fresh vars y_i and check validity of the first-order formula

 $\forall Y. \left(\left(\bigwedge_{i} P_{l}(\widehat{\mu}[x_{i}]) \leq y_{i} \leq P_{u}(\widehat{\mu}[x]) \right) \to \widehat{\varphi}\{X \mapsto \widehat{\mu}[X]\} \right) \{Y \mapsto uf(\widehat{\mu}[X]) \}$

- Prototype Implementation in MathSAT + PySMT
- 887 BMC Benchmarks (also scaled)
 - Hand-crafted benchmarks
 - Discretized Hybrid System benchmarks
 - HyComp benchmarks
 - iSAT benchmarks
 - HyST benchmarks
 - HARE benchmarks
- 681 MetiTarski Benchmarks (also scaled)
- 944 dReal Benchmarks

- Tools
 - MathSAT
 - MetiTarski
 - ISAT3
 - dReal

Results

Benchmarks	Bounded Model Checking (887)			Mathematical (681)		
Result	SAT	UNSAT	MaybeSAT	SAT	UNSAT	MaybeSAT
MetiTarski	N.A.	N.A.	N.A.	N.A.	530	N.A.
MATHSAT	72	553	N.A.	0	210	N.A.
MATHSAT-NOUNISAT	44	554	N.A.	0	221	N.A.
iSAT3	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
DREAL	N.A.	392	281 (67/23)	N.A.	285	316 (0/253)
Benchmarks	Scale	ed Boundeo	d Model Checking (887)	Scal	ed Mathe	matical (681)
Result	SAT	UNSAT	MaybeSAT	SAT	UNSAT	MaybeSAT
MATHSAT	84	556	N.A.	0	215	N.A.
MATHSAT-NOUNISAT	48	556	N.A.	0	229	N.A.
iSAT3	35	470	87 (32/7)	0	212	137 (0/115)
DREAL	N.A.	403	251 (77/23)	N.A.	302	245 (0/195)

Table 1. Results on the BMC and Metitarski benchmarks.

Benchmarks	DREAL (all) (944)			Benchmarks	DREAL (exp/sin only) (96)		
Status	SAT	UNSAT	MaybeSAT	Status	SAT	UNSAT	MaybeSAT
DREAL (orig.)	N.A.	102	524(3/4)	DREAL (orig.)	N.A.	17	37 (3/3)
MATHSAT	3	68	N.A.	MATHSAT	3	39	N.A.
DREAL	N.A.	44	57(3/4)				

Table 2. Results on the Dreal benchmarks.

Thank You

