
LibPoly: A Library for Reasoning about Polynomials∗

Dejan Jovanović and Bruno Dutertre

SRI International

Abstract

LibPoly is a C library for computing with polynomials. It provides data structures
to represent multivariate polynomials, and algorithms ranging from simple arithmetic and
GCD computation, to root isolation and computation with algebraic numbers. The goal of
the library is to be simple and extensible, and it is targeting tools that reason in nonlinear
arithmetic. LibPoly is already successfully used in the Yices 2 nonlinear arithmetic solver.
The library is freely available under a permissive open-source license. We present the
basic functionality of LibPoly through the Python interface, and we describe a simple
implementation of a classical cylindrical algebraic decomposition algorithm.

1 Introduction

Nonlinear arithmetic is an expressive domain with many applications in theorem proving [14],
verification of hybrid systems [27], program verification and synthesis [11, 25, 10], termination
analysis [24], and even cryptography [2] and verification of neural networks [20, 23]. Symbolic
reasoning in nonlinear arithmetic has traditionally been the forte of computer algebra systems
such as Mathematica and Maple. With the advent of satisfiability modulo theories (SMT)
solvers [12] there has been a renewed effort in developing nonlinear reasoning tools that focus
on satisfiability and scalability: applications usually require solving many problems very fast,
where each individual problem might be large but not intrinsically hard (for example, mostly
linear). One example of a method that has been successful in the SMT context is NLSAT [22].

Computer algebra systems often support more general algebraic structures, but they usually
include, or rely on, a specialized library for polynomial computations. A notable example of
such a is the saclib [9, 8] library that backs the qepcad [5] cylindrical algebraic decomposi-
tion (CAD) system. Other examples include CoCoA [1], Singular [17], pari/gp [26], ntl
[28], flint [19], GiNaC [4], and redlog [15]. These libraries, although very powerful, pro-
vide support for certain polynomial operations (e.g., univariate factorization or Gröbner basis
computation), but they lack some of the features to support an efficient implementation of a
CAD-based SMT solver in the style of NLSAT. Some of the missing features are related to
the software development aspects, such as, permissive open-source license and a clean C inter-
face with good documentation that is easy to use.1 But, more importantly, implementing an
NLSAT-style solver requires full support for CAD operations, while also being flexible enough
to handle polynomials with thousands of variables and a continuously changing variable order
(similar to the order of variables in a SAT solver).

We present LibPoly, a C library that can support the needs of modern SMT solvers in com-
puting with polynomials. In addition to basic operations in the ring of polynomials, LibPoly
includes all the necessary ingredients for implementing CAD-based SMT reasoning engines,
such as multivariate root isolation and projection of polynomials using sub-resultant sequences.

∗The research presented in this paper has been supported by NASA Cooperative Agreements NNX14AI05A
and by NSF grant 1528153.

1For example, redlog and Singular don’t have a C interface and require running a separate kernel and
communication channels like pipes and sockets.

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

The interface to the library is designed to support both the traditional, purely symbolic algo-
rithms, and the more recent model-driven methods. Therefore, LibPoly supports operations
not usually considered in traditional symbolic computer algebra systems, such as a variable
order that can change freely between various operations.

To present the functionality of LibPoly, we go through a simple implementation of a
cylindrical algebraic decomposition (CAD) algorithm [7] using the Python API to LibPoly.2

We then discuss current status and future plans. We present the basic functionalities that
are needed for implementing a CAD-based reasoning system, but the library supports more
advanced features, such as computing with polynomial over modular arithmetic,

2 Usage and Examples

We will go through a Python implementation of the CAD construction algorithm by relying on
LibPoly’s Python bindings. We first demonstrate the basics of polynomial construction and
manipulation. Then we show how to isolate and manipulate roots of univariate polynomials
and construct the sign table of a univariate polynomial. Finally, we extend the sign-table
construction to the multivariate case, by relying on CAD projections, resulting in a simple
implementation of CAD construction.3

2.1 Basic Operations

Variables. A variable in LibPoly is an object representing real-valued variables. Internally,
it has an associated printable name and a unique numerical ID. The following example imports
the LibPoly library in Python and creates three variables x, y, and z.

1 import polypy # Import the library
2 x = polypy.Variable(’x’) # Variable x
3 [y, z] = [polypy.Variable(s) for s in [’y’, ’z’]] # Variables y and z

Variable Order. An important feature of LibPoly is a flexible order over the variables. By
default, variables are ordered by numerical ID’s (i.e., in order of creation), but this order can
be changed dynamically. The order is updated by manipulating the order list that changes the
variable order according to the following semantics:

• variables in the order list are smaller than the variables not in the order list;

• variables in the order list are ordered according to the list order; and

• variables not in the order list are ordered according to their numerical ID’s.

The following example illustrates the order manipulation.

1 order = polypy.variable_order # order = [] , x < y < z
2 order.push(z) # order = [z] , z < x < y
3 order.push(y) # order = [z, y], z < y < x
4 order.pop() # order = [z] , z < x < y
5 order.push(x) # order = [z, x], z < x < y

2The presentation focuses on the Python API for clarity, but the library is implemented in C and provides
a C API with equivalent functionality.

3Complete examples are available at https://github.com/SRI-CSL/libpoly/tree/master/examples.

2

https://github.com/SRI-CSL/libpoly/tree/master/examples

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

Polynomials. Polynomials in LibPoly always have integer coefficients. They can be cre-
ated and combined using the standard Python arithmetic operators over variables and integer
constants. The following example creates two polynomials f = (x2 − 2x + 1)(x2 − 2) and
g = z(x2 − y2).

1 f = (x**2 - 2*x + 1)*(x**2 - 2) # Univariate polynomial
2 g = z*(x**2 - y**2) # Multivariate polynomial

The internal representation of polynomials is recursive: a polynomial is a list of coefficients in
its topmost variable, where each coefficient is a polynomial in the remaining variables. This
representation is updated dynamically to respect the variable order. For example, if the variable
order is x < y < z, then g is a polynomial in Z[x, y, z], with z as top variable. Therefore, g is
represented as g = (−y2 + x2) · z. On the other hand, if the variable order is z < y < x, then x
is the top variable, and g = z · x2 + (−z) · y2.

1 order.set([x, y, z]) # z is the top variable , i.e. g in Z[x,y,z]
2 print g # Out: (-1*y**2 + (1*x**2))*z
3 order.set([z, y]) # x is the top variable , i.e. g in Z[z,y,x]
4 print g # Out: (1*z)*x**2 + ((-1*z)*y**2)

Several operations give access to this recursive structure: The var() method returns the top
variable of the polynomial in the current order, the degree() method returns the degree of the
polynomial in its top variables, and the coefficients() method returns the list of polynomial
coefficients with respect to its top variable (in decreasing degree order). The derivative

() method computes the derivative of the polynomial with respect to its top variable. The
factor_square_free() method returns a factorization of the polynomial where no factor is a
square and the factors are pairwise co-prime.4

1 g.var() # Out: Variable(’x’)
2 g.degree () # Out: 2
3 g.coefficients () # Out: [(-1*z)*y**2, 0, 1*z]
4 g.derivative () # Out: (2*z)*x
5 f.factor_square_free () # Out: [(1*x**2 - 2, 1), (1*x - 1, 2)]
6 g.factor_square_free () # Out: [(1*z, 1), (1*x**2 + (-1*y**2), 1)]

In the example above, f is factored (over Z) into irreducible polynomials (x2− 2)(x− 1)2. The
polynomial g is factored into g = z.(x2 − y2). This is not a full factorization as (x2 − y2) could
be further decomposed but the factorization is square free.

2.2 Constructing a Sign Table

Root Isolation. When analyzing the behavior of a polynomial f ∈ Z[~x, y], the basic operation
is finding the roots of f . A root of f , given an assignment of variables ~x to values ~a, is a
value b such that f(~a, b) = 0. The ordered list of roots of f can be obtained by calling the
roots_isolate() method on the polynomial f .

1 m = polypy.Assignment ()
2 r = f.roots_isolate(m)
3 print r[0] # Out: <1*x**2 + (-2), (-3/2, -5/4)>
4 print r[1] # Out: 1
5 print r[2] # Out: <1*x**2 + (-2), (5/4, 3/2)>

In the example above, we first create an empty Assignment object, and then obtain the roots
of f = (x2 − 2)(x− 1) ∈ Z[x]. The result is the list

[
−
√

2, 1,
√

2
]
. LibPoly displays −

√
2 and√

2 as algebraic numbers as explained in the following paragraph.

4This is not a full factorization, but it is sufficient for most purposes where factoring is useful. Complete
factorization, although potentially useful, is not necessary for CAD and is currently not available in LibPoly.

3

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

Working with Values. The real values (including roots) in LibPoly are represented as value
objects and are either integers, dyadic rationals5, or algebraic numbers such as

√
2. Algebraic

numbers are represented symbolically as pairs 〈f, I〉, where f is a univariate polynomial f , and
I is an real interval in which f has a unique root. The algebraic number 〈f, I〉 is the root of f
that occurs in interval I. In the previous example, the algebraic number

√
2 is represented as

the pair 〈x2 − 2, (5
4 ,

3
2)〉.

1 r[0]. to_double () # Out: -1.41421356237
2 r[0] < r[1] # Out: True
3 r[0]. get_value_between(r[2]) # Out: 0
4 m.set_value(x, 0) # Set x -> 0
5 f.sgn(m) # Out: -1
6 m.set_value(x, r[0]) # Set x -> -sqrt (2)
7 f.sgn(m) # Out: 0

The snippet above illustrates the basic operations on real values. Real values can be con-
verted to floating point with the to_double() method, and they can be compared to each
other with the usual comparison operators in Python. Given two values v1 and v2, method
get_value_between() returns the a value in the interval (v1, v2). The method picks the “sim-
plest” possible value, namely a dyadic rational in the interval with the smallest value of m.
In particular, the method will return an integer if one exists in (v1, v2). Method set_value()

assigns a value to a variable, while unset_value() clears the value. Method sgn() computes
the sign of a polynomial at a point given by a full assignment.

Constructing a Sign Table. We now have all the ingredients to compute sign tables of
univariate polynomials. For a set of univariate polynomials F a sign table of F is a decom-
position of R into intervals I1, . . . , In, such that, in each interval Ik, the polynomials in F are
sign-invariant on Ik (i.e., they don’t change sign). To construct a sign table of F , we first
isolate the roots of all f ∈ F , then we sort the computed roots by increasing value, and, finally,
we evaluate the sign of the polynomials in the intervals delimited by the roots. In each such
interval, Ik, the polynomials of F do not change sign, so we can evaluate the sign of each f ∈ F
on Ik by evaluating the sign of f at a single evaluation point of Ik.

A Python function that constructs a sign table using LibPoly is presented in Figure 1.
Applying this function to polynomials f = x2− 2 and g = x2− 3 will result in a sign table that
resembles the following.

(−∞,−
√

3) −
√

3 (−
√

3,−
√

2) −
√

2 (−
√

2,
√

2)
√

2 (
√

2,
√

3)
√

3 (
√

3,+∞)

f 1 1 1 0 −1 0 1 1 1

g 1 0 −1 −1 −1 −1 −1 0 1

In the univariate case, building a sign table is a complete method for determining if a set of
polynomial constraints has a solution. For example, we can solve the constraint (f > 0)∧(g < 0)
by examining the sign table. It is clear that the solutions are in the set (−

√
3,−
√

2)∪(
√

2,
√

3).
Moreover, in order to perform such an analysis, we only need to keep track of one evaluation
point per interval. Figure 2 plots the two polynomials f and g of our example, and shows the
evaluation points (red dots).

2.3 Cylindrical Algebraic Decomposition

A sign table that we computed in the previous section decomposes R into finitely many regions.
Each region is either an open interval or a point, and in each region, the polynomials of F are

5Rationals of the form n
2m

.

4

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

1 def sign_table(x, polys , m):
2 # Get the roots and print the header
3 roots = set() # Set of roots
4 output("poly/int")
5 for f in polys:
6 output(f)
7 f_roots = f.roots isolate(m)
8 roots.update(f_roots)
9 stdout.write("\n")

10 # Sort the roots and add infinities
11 roots = [polypy.INFINITY_NEG] + sorted(roots) + [polypy.INFINITY_POS]
12 # Print intervals and signs in the intervals
13 root_i , root_j = itertools.tee(roots)
14 next(root_j)
15 for r1, r2 in itertools.izip(root_i , root_j):
16 output ((r1.to_double (), r2.to_double ()))
17 # The interval (r1, r2)
18 v = r1.get value between(r2);

19 m.set_value(x, v)
20 for f in polys: output(f.sgn(m))

21 stdout.write("\n")
22 # The interval [r2]
23 if r2 != polypy.INFINITY_POS:
24 output(r2.to_double ())
25 m.set_value(x, r2)
26 for f in polys: output(f.sgn(m))

27 stdout.write("\n")
28 m.unset_value(x)

Figure 1: A function for printing a sign table of a set of polynomials. Code fragments where
relevant LibPoly functionality is used are emphasized. For example, sorting in Line 11 is done
using the Python built-in sorted() function that compares values using value comparison
functionality from LibPoly.

-3

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

x

x**2 - 2
x**2 - 3

Figure 2: A plot of polynomials f = x2 − 2 and f = x2 − 3, along with the evaluation points
during sign table construction.

5

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

1 # Lift the first variable , update the assignment , and lift recursively
2 def lift_first_var(poly_map , vars , m):
3 if len(vars) == 0:
4 # Assignment complete , print the evaluation point
5 print(m)
6 return
7 # The first unassigned variable
8 x = vars[0]
9 # Get the roots of polynomials where x is the top variable

10 roots = set()
11 for f in poly_map[x]:
12 f_roots = f.roots_isolate(m)
13 roots.update(f_roots)
14 # Sort the roots and add infinities
15 roots = [polypy.INFINITY_NEG] + sorted(roots) + [polypy.INFINITY_POS]
16 # Make a ’sign table’ for x, and lift remaining variables recursively
17 r_i , r_j = itertools.tee(roots)
18 next(r_j)
19 for r1, r2 in itertools.izip(r_i , r_j):
20 # The interval (r1, r2), also called ’sector ’
21 v = r1.get_value_between(r2);
22 m.set_value(x, v)
23 # Lift recursively over the remaining variables
24 lift first var(poly map, vars[1:], m)

25 # The interval [r2], also called ’section ’
26 if r2 != polypy.INFINITY_POS:
27 m.set_value(x, r2)
28 lift first var(poly map, vars[1:], m)

29 m.unset_value(x)
30
31 # Do the lifting
32 def lift(poly_map , vars):
33 m = polypy.Assignment ()
34 lift_first_var(poly_map , vars , m)

Figure 3: CAD lifting procedure: generalized sign-tabling for n variables. Differences compared
to the sign_table() function are underlined.

sign-invariant. The sign table completely characterizes the behavior of F on R. A natural ques-
tion arises: can we extend the concept of sign table (with evaluation points) to the multivariate
case, so that we can solve polynomials constraints with several variables? The answer to this
question is positive, and the generalization of sign tables to Rn is called cylindrical algebraic
decomposition (CAD) [7].

CAD Lifting. A näıve attempt at constructing a CAD (sign table) would be to extend the
sign-tabling as follows. Let F ⊆ Z[x1, . . . , xn] be a set of polynomials. We partition F according
to the top variable of each polynomial:

F = F1 ∪ F2 ∪ · · · ∪ Fn .

Every polynomial f ∈ Fk contains only variables x1, . . . , xk, and xk is the top variable of f .
With this setup, we can directly extend the sign_table() function of Figure 1 into a recursive
procedure that builds the CAD of F one variable at a time. We do so by building a sign table
T1 for polynomials in F1. Then, for each evaluation point α in T1, we build a sign table Tα,2
for polynomials in F2, and so on. In CAD terminology this procedure is called lifting.

The function lift() from Figure 3 takes as input a map poly_map that maps xk to Fk as
above, and a list vars of variables [x1, . . . , xn]. The function outputs the computed evaluation
points. It shouldn’t be too hard to see that this lifting procedure on its own does not produce

6

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

1

1

0

1

1

0

-1

0

1

1

0

1

1

Figure 4: A plot of the roots of the polynomial f = x2 + y2 − 1 in blue, and the evaluation
points (with f sign annotation) from the correct CAD of f in red. The evaluation points from
the sign table of the projection polynomial x2 − 1 are shown in brown at the bottom.

a satisfactory result. As an example, let’s apply it to the polynomial f = x21 + x22 − 1, i.e. let
F = {f} which partitions into F1 = ∅ and F2 = {f}.

lift x1: Since F1 is empty, the set of roots for x1 is also empty, and we can choose any value in
(−∞,+∞) as evaluation point for x1. For example, let x1 7→ 2 be the evaluation point
for x1.

lift x2: F2 = {f}, and we search for the roots of the polynomial f when x1 7→ 2. This amounts
for finding the roots of f(2, x2) = x22 + 3. Since this polynomial does not have roots in
x2, we can, as before, pick any evaluation point. We choose x2 7→ 0.

In the above example, the procedures computes a single evaluation point, namely, (x1, x2) =
(2, 0). At this point, f has positive sign/ This single evaluation point clearly does not capture
the behavior of f over R2, since f is not uniformly positive.

CAD Projection. The above example shows that building sign tables variable by variable is
not in itself sufficient to construct a proper sign-invariant decomposition for a set of polynomials
F . The problem lies in the fact that the lower-level polynomial sets Fk do not capture enough
information about the behavior of the whole set F , and the sign-tabling can miss important
evaluation points. We can fix this, while keeping the same overall procedure, by adding carefully
crafted polynomials to the sets Fk. These additional polynomials will “guide” the construction
of sign tables to cover all possible behaviors of the original set F . In the seminal paper on CAD
construction [7], George Collins showed how to do this completion, by projecting polynomials
from higher levels into the lower levels.

Definition 2.1 (Collins Projection). Given a set of polynomials F ⊂ Z[~y, x], the Collins

7

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

projector operator Pc(F , x) is defined as⋃
f∈F

coeff(f, x) ∪
⋃
f∈F

g∈R∗(f,x)

psc(g, g′x, x) ∪
⋃
i<j

gi∈R∗(fi,x)
gj∈R∗(fj,x)

psc(gi, gj , x) .

The projection operator above, when applied to F , introduces enough additional polynomi-
als that capture the necessary missing behavior. The individual operations in Pc are advanced
polynomial operations (for more details see, e.g., [3, 6]), that are all available in LibPoly.
The set of coefficients coeff(f, x) can be obtained with the coefficients() method, while the
derivative can be obtained with the derivative() method. A reductum6 R(f, x) of a polyno-
mial can be obtained using the reductum() method, and the principal subresultant coefficients
psc(f, g) of two polynomials can be obtained with the psc() method.

Before defining the projection function, we first define two utility function. First, we define
a function that, given a polynomial f , returns all non-constant reductums of f in variable x.

1 # Returns reductum closure of f, excluding constants
2 def get_reductums(f, x):
3 R = []
4 while f.var() == x: R.append(f); f = f.reductum()
5 return R

Additionally, instead of adding polynomials directly to the sets Fk, we will add them trough
the following proxy function that performs factorization first. The square-free factorization
simplifies the polynomials and ensures that some unnecessary complexity is removed.

1 # Add polynomials to projection map
2 def add_polynomial(poly_map , f):
3 # Factor the polynomial f
4 for (f_factor , multiplicity) in f.factor square free():

5 # Add non -constant polynomials to poly_map
6 if (f factor.degree() > 0):

7 x = f factor.var()
8 if (x not in poly_map): poly_map[x] = set()
9 poly_map[x].add(f_factor)

10
11 # Add a collection of polynomials to projection map
12 def add_polynomials(poly_map , polys):
13 for f in polys: add_polynomial(poly_map , f)

We are now ready to define our overall projection function project(). This function projects
the sets Fn, . . . ,F1 in sequence by applying the projection operator Pc to each of them.

1 # Project: go down the variable stack and project
2 def project(poly_map , vars):
3 for x in reversed(vars):
4 # Project variable x
5 x_polys = poly_map[x]
6 # [1] coeff(f) for f in poly[x]
7 for f in x_polys:
8 add_polynomials(poly_map , f.coefficients())
9 # [2] psc(g, g’) for f in poly[x], g in R(f, x)

10 for f in x_polys:
11 for g in get_reductums(f, x):
12 g_d = f.derivative()
13 if (g_d.var() == x):
14 add_polynomials(poly_map , g.psc(g d))

15 # [3] psc(g1, g2) for f1 , f2 in poly[x], g1 in R(f1 , x), g2 in R(f2, x)
16 for (f1, f2) in itertools.combinations(x_polys , 2):
17 f1_R = get_reductums(f1 , x)
18 f2_R = get_reductums(f2 , x)

6Reductum of a polynomial f is f without its highest-degree term.

8

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

19 for (g1, g2) in itertools.product(f1_R , f2_R):
20 add_polynomial(poly_map , g1.psc(g2))

Applying the project() function to the polynomial set F = {x21 + x22 − 1}, from the failed
example, results in F being enlarged to F = {x21−1, x21 +x22−1}. The newly added polynomial
adds two critical roots to the sign table of x1, which allows the lifting to succeed in CAD
construction.

CAD Construction. All the tools are now in place for a full CAD construction. The main
CAD construction routine cad() takes a list of polynomials and outputs the evaluation points
corresponding to the CAD of the polynomials. The CAD is constructed by first projecting the
input polynomials, and then constructing the CAD evaluation points over the projects set using
the lifting procedure.

1 # Run the CAD construction
2 def cad(polys , vars):
3 polypy.variable_order.set(vars)
4 poly_map = {}
5 add_polynomials(poly_map , polys)
6 project(poly_map , vars)
7 lift(poly_map , vars)

Applying the procedure above on our example set F = {x2 + y2 − 1} results in the evaluation
points depicted in Figure 4.

3 Current Status and Plans for Further Development

LibPoly is freely available on GitHub7 under the LGPL license, with more information avail-
able at the LibPoly web page.8 The implementation is about 15KLOC of C code, with the
only external dependency being the widely used GMP library [18]. The library is stable and
is currently used successfully in the yices2 [16] SMT solver to back the nonlinear reasoning
capabilities through the native C API (see e.g. [21]).

Although the library is efficient9, there are many parts of the library that could benefit
from algorithmic improvements or new features. For example, more efficient algorithms for
polynomial factorization and GCD computation, and more efficient computation with algebraic
numbers (and support of infinitesimal numbers [13]). As the library is open source, we invite
contributions and suggestions for future development at the LibPoly GitHub page.

References

[1] J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for computations in commutative
algebra... and beyond. In International Congress on Mathematical Software, pages 73–76. Springer,
2010.

[2] G. Barthe, E. Fagerholm, D. Fiore, J. Mitchell, A. Scedrov, and B. Schmidt. Automated analysis
of cryptographic assumptions in generic group models. In International Cryptology Conference,
pages 95–112. Springer, 2014.

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry, volume 20033. Springer,
1996.

7https://github.com/SRI-CSL/libpoly
8http://sri-csl.github.io/libpoly/
9yices2 has won the nonlinear divisions (QF NRA, QF NIA) of the 2016 SMT competition.

9

https://github.com/SRI-CSL/libpoly
http://sri-csl.github.io/libpoly/

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

[4] C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC framework for symbolic com-
putation within the C++ programming language. Journal of Symbolic Computation, 33(1):1–12,
2002.

[5] C. W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM
SIGSAM Bulletin, 37(4):97–108, 2003.

[6] B. Buchberger, G. E. Collins, R. Loos, and R. Albrecht, editors. Computer algebra. Symbolic and
algebraic computation. Springer, 1982.

[7] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompostion.
In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975,
pages 134–183. Springer, 1975.

[8] G. E. Collins. History of SACLIB. 1998.

[9] G. E. Collins, M. Encarnacion, H. Hong, J. Johnson, W. Krandick, A. Mandache, A. Neubacher,
and H. Vielhaber. SACLIB user’s guide. RISC Linz, Johannes Kepler University, Linz, 1993.

[10] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation using non-linear
constraint solving. In International Conference on Computer Aided Verification, pages 420–432.
Springer, 2003.

[11] E. Darulova and V. Kuncak. Sound compilation of reals. Acm Sigplan Notices, 49(1):235–248,
2014.

[12] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications. Com-
munications of the ACM, 54(9):69–77, 2011.

[13] L. De Moura and G. O. Passmore. Computation in real closed infinitesimal and transcendental
extensions of the rationals. In International Conference on Automated Deduction, pages 178–192.
Springer, 2013.

[14] W. Denman and C. Muñoz. Automated real proving in pvs via metitarski. In International
Symposium on Formal Methods, pages 194–199. Springer, 2014.

[15] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. Acm Sigsam
Bulletin, 31(2):2–9, 1997.

[16] B. Dutertre. Yices 2.2. In International Conference on Computer Aided Verification, pages 737–
744. Springer, 2014.

[17] W. ecker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-0 — A computer algebra
system for polynomial computations. http://www.singular.uni-kl.de, 2016.

[18] T. Granlund et al. GNU MP 6.0 Multiple Precision Arithmetic Library. 2015.

[19] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2016. Version
2.4.0, http://flintlib.org.

[20] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.
arXiv preprint arXiv:1610.06940, 2016.

[21] D. Jovanović. Solving nonlinear integer arithmetic with MCSAT. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 330–346. Springer, 2017.

[22] D. Jovanović and L. De Moura. Solving non-linear arithmetic. In International Joint Conference
on Automated Reasoning, pages 339–354, 2012.

[23] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. arXiv preprint arXiv:1702.01135, 2017.

[24] J. Leike and M. Heizmann. Ranking templates for linear loops. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 172–186. Springer, 2014.

[25] J. Leike and A. Tiwari. Synthesis for polynomial lasso programs. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 434–452. Springer, 2014.

[26] The PARI Group, Univ. Bordeaux. PARI/GP version 2.9.0, 2016. available from http://pari.

math.u-bordeaux.fr/.

10

http://www.singular.uni-kl.de
http://flintlib.org
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

LibPoly: A Library for Reasoning about Polynomials Jovanović and Dutertre

[27] A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In International Conference on
Automated Deduction, pages 485–501. Springer, 2009.

[28] V. Shoup. NTL: A library for doing number theory, 2001.

11

	Introduction
	Usage and Examples
	Basic Operations
	Constructing a Sign Table
	Cylindrical Algebraic Decomposition

	Current Status and Plans for Further Development

