Proof Certificates for SMT-based Model Checkers

Alain Mebsout and **Cesare Tinelli** SMT 2016

July 2nd, 2016

Motivation

- Model checkers return error traces but no evidence when they say yes
- \cdot Complex tools

Motivation

- Model checkers return error traces but no evidence when they say yes
- Complex tools
- Goal: improve trustworthiness of these tools
- Approach: produce proof certificates

Motivation

- Model checkers return error traces but no evidence when they say yes
- Complex tools
- Goal: improve trustworthiness of these tools
- Approach: produce proof certificates
- Implemented in Kind 2

Certificate generation and checking

Proof certificate production as a two-steps process

Intermediate certificates

Intermediate Certificates

where ϕ is k-inductive and implies the property P, \Rightarrow enough to prove that P holds in $S = (\mathbf{x}, l, T)$

Intermediate Certificates

where ϕ is k-inductive and implies the property P, \Rightarrow enough to prove that P holds in $S = (\mathbf{x}, I, T)$

Minimization of Intermediate (SMT-LIB 2) Certificates

Two dimensions:

- · reduce k
- simplify inductive invariant
 - simplify with unsat cores
 - simplify with counter-examples to induction

Rationale: easier to check a smaller/simpler certificate

(1) Trimming invariants certificate: $(1, \phi_1 \wedge ... \wedge \phi_n \wedge P)$

$$\underbrace{\phi_1 \wedge \ldots \wedge \phi_n}_{\text{invariants}} \wedge \underbrace{P}_{\text{property}} \wedge T \wedge \neg P' \models \bot$$

(1) Trimming invariants certificate: $(1, \phi_1 \wedge ... \wedge \phi_n \wedge P)$

$$\underbrace{\phi_1 \wedge \ldots \wedge \phi_n}_{\text{invariants}} \wedge \underbrace{P}_{\text{property}} \wedge T \wedge \neg P' \models \bot$$

from unsat core :
$$R \subseteq \{\phi_1 \land \ldots \land \phi_n\}$$

(1) Trimming invariants certificate: $(1, \phi_1 \wedge ... \wedge \phi_n \wedge P)$

$$\underbrace{\phi_1 \wedge \ldots \wedge \phi_n}_{\text{invariants}} \wedge \underbrace{P}_{\text{property}} \wedge T \wedge \neg P' \models \bot$$

from unsat core : $R \subseteq \{\phi_1 \land \ldots \land \phi_n\}$

$$R \wedge P \wedge T \stackrel{?}{\models} R' \wedge P'$$

(1) Trimming invariants certificate: $(1, \phi_1 \wedge ... \wedge \phi_n \wedge P)$

$$\underbrace{\phi_1 \wedge \ldots \wedge \phi_n}_{\text{invariants}} \wedge \underbrace{P}_{\text{property}} \wedge T \wedge \neg P' \models \bot$$

from unsat core : $R \subseteq \{\phi_1 \land \ldots \land \phi_n\}$

$$R \wedge P \wedge T \models R' \wedge P'$$

- yes: keep R

- **no**: restart with $P := R \wedge P$

A taste of certificate minimization (cont.)

(2) Cherry-picking invariants certificate: $(1, \ \phi_1 \land \ldots \land \phi_n \land P)$

$$P \wedge T \not\models P'$$

A taste of certificate minimization (cont.)

(2) Cherry-picking invariants certificate: $(1, \ \widetilde{\phi_1 \wedge \ldots \wedge \phi_n} \wedge P)$

$$P \wedge T \not\models P'$$

from model $\mathcal{M}:\phi\in R$ such that $\mathcal{M}\not\models\phi$

A taste of certificate minimization (cont.)

(2) Cherry-picking invariants certificate: $(1, \overline{\phi_1 \wedge \ldots \wedge \phi_n} \wedge P)$

$$P \wedge T \not\models P'$$

from model $\mathcal{M}:\phi\in R$ such that $\mathcal{M}\not\models\phi$

$$P := \phi \wedge P \qquad R := R \setminus \{\phi\}$$

Front End Certificates

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression, encodings, ...)

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression, encodings, ...)

How to trust the translation from input language to internal FOL representation?

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression, encodings, ...)

How to trust the translation from input language to internal FOL representation?

Lightweight verification akin to Multiple-Version Dissimilar Software Verification of DO-178C (12.3.2)

Front end certificates in Kind 2: approach

LFSC Proofs

Producing proofs

Producing proofs of invariance


```
\mathcal{S} = (\mathbf{s}, I[\mathbf{s}], T[\mathbf{s}, \mathbf{s'}]): input system P[\mathbf{s}]: property proven invariant for \mathcal{S} (k, \phi[\mathbf{s}]): certificate produced by Kind 2
```

- \cdot We can formally check that ϕ
 - 1. is k-inductive
 - 2. implies P
- Our goal: produce a detailed, self-contained and independently machine-checkable proof

Proving invariance by k-induction

$$\mathcal{S} = (\mathbf{s}, I[\mathbf{s}], T[\mathbf{s}, \mathbf{s'}])$$
: input system $P[\mathbf{s}]$: property proven invariant for \mathcal{S} $(k, \phi[\mathbf{s}])$: certificate produced by Kind 2

 ϕ is a k-inductive strengthening of P:

$$I[\mathbf{s}_{0}] \wedge T[\mathbf{s}_{0}, \mathbf{s}_{1}] \wedge \ldots \wedge T[\mathbf{s}_{k-2}, \mathbf{s}_{k-1}] \vDash \phi[\mathbf{s}_{0}] \wedge \ldots \wedge \phi[\mathbf{s}_{k-1}]$$

$$(base_{k})$$

$$\phi[\mathbf{s}_{0}] \wedge T[\mathbf{s}_{0}, \mathbf{s}_{1}] \wedge \ldots \wedge \phi[\mathbf{s}_{k-1}] \wedge T[\mathbf{s}_{k-1}, \mathbf{s}_{k}] \vDash \phi[\mathbf{s}_{k}]$$

$$(step_{k})$$

$$\phi[\mathbf{s}] \vDash P[\mathbf{s}]$$

$$(implication)$$

Proving invariance by k-induction

$$\mathcal{S} = (\mathbf{s}, I[\mathbf{s}], T[\mathbf{s}, \mathbf{s'}])$$
: input system $P[\mathbf{s}]$: property proven invariant for \mathcal{S} $(k, \phi[\mathbf{s}])$: certificate produced by Kind 2

 ϕ is a *k*-inductive strengthening of *P*:

$$I[\mathbf{s}_{0}] \wedge T[\mathbf{s}_{0}, \mathbf{s}_{1}] \wedge \ldots \wedge T[\mathbf{s}_{k-2}, \mathbf{s}_{k-1}] \models \phi[\mathbf{s}_{0}] \wedge \ldots \wedge \phi[\mathbf{s}_{k-1}]$$

$$(base_{k})$$

$$\phi[\mathbf{s}_{0}] \wedge T[\mathbf{s}_{0}, \mathbf{s}_{1}] \wedge \ldots \wedge \phi[\mathbf{s}_{k-1}] \wedge T[\mathbf{s}_{k-1}, \mathbf{s}_{k}] \models \phi[\mathbf{s}_{k}]$$

$$(step_{k})$$

$$\phi[\mathbf{s}] \models P[\mathbf{s}]$$

$$(implication)$$

Use CVC4 to generate proofs for the validity of each sub-case

Kind 2 generates a proof of invariance by *k*-induction and reuses the proofs of CVC4

Encoding of Lustre variables as functions over naturals (indexes)

```
In Lustre
node main (a: bool) returns (OK: bool)
var b: bool;
. . .
In the LFSC signature:
(declare index sort)
(declare ind int → index)
In the LFSC proof:
(declare a (term (arrow index Bool)))
(declare b (term (arrow index Bool)))
(declare OK (term (arrow index Bool)))
. . .
```

LFSC encodings (cont.)

Predicates and relations over copies of the same state

→ predicates/relations over indexes

- $\cdot P(\mathbf{s}_i) \longrightarrow P_{\mathbf{s}}(i)$
- $R(\mathbf{s}_i, \mathbf{s}_j) \rightsquigarrow R_{\mathbf{s}}(i, j)$

Predicates and relations over copies of the same state

→ predicates/relations over indexes

- $\cdot P(\mathbf{s}_i) \longrightarrow P_{\mathbf{s}}(i)$
- $\cdot R(\mathbf{s}_i, \mathbf{s}_j) \rightsquigarrow R_{\mathbf{s}}(i, j)$

In the LFSC signature:

```
;; relations over indexes (used for transition relation)
(define rel int → int → formula)

;; sets over indexes (used for initial formula and properties)
(define set int → formula)

;; derivability judgment for invariance proofs
(declare invariant set → rel → set → type)
```


Predicates and relations over copies of the same state

→ predicates/relations over indexes

- $\cdot P(\mathbf{s}_i) \longrightarrow P_{\mathbf{s}}(i)$
- $\cdot R(\mathbf{s}_i, \mathbf{s}_j) \rightsquigarrow R_{\mathbf{s}}(i, j)$

In the LFSC proof:

```
;; encoding of property
(define P : set
   (λi. (p_app (apply _ _ OK (int i)))))
;; encoding of transition relation
(define T : rel
   (λi. λj. ...))
```

LFSC rules – k-induction


```
(declare k-ind
 \Pi k: int. ; bound k
 \Pi I: set. ; initial states
 \Pi T: rel. : transition relation
 \Pi P: set. ; k-inductive invariant
 ; formula for base case
 \Pi r1: B = (base I T P k).
 ; formula for step case
 \Pi r2: S = (step T P k).
 ; proof of base case
 \Pi ub : (th holds B).
 ; proof of step case
 \Pi us : (th holds S).
 invariant I T P
```


LFSC rules - implication


```
(declare inv-impl
  \Pi I: set. \Pi T: rel.
  \Pi P1: set. \Pi P2: set.
  ;; proof that P1 => P2
  П u :
     \Pi k: int.
     th_holds ((P1 k) \Rightarrow (P2 k)).
  ;; proof that P1 is invariant
  \Pi i:
     invariant T T P1.
  invariant I T P2
```


Small Lustre node: detection of rising edge:

```
node edge (x: bool) returns (y: bool);
var OK: bool;
let
  y = false -> x and not pre x;
  OK = not x => not y;
  --%PROPERTY OK;
tel
```

LFSC proof for rising edge node


```
;; LFSC proof produced by kind2 v0.8.0-425-g294ec4d and CVC4
;; from original problem ex.lus
:: Declarations and definitions
(declare edge.usr.x (term (arrow index Bool)))
(declare edge.usr.y (term (arrow index Bool)))
(declare edge.res.init flag (term (arrow index Bool)))
(declare edge.impl.usr.OK (term (arrow index Bool)))
(define I (: (! int formula)
 (\ I%1 (@ let3 (ind I%1) (@ let4 (p app (apply edge.usr.y (ind I%1))) (and (iff let4 false)
 (and (iff (p_app (apply _ edge.impl.usr.OK (ind I%1))) (impl (not (p_app (apply _ edge.usr.x (ind I%1)))) (not let4)))
 (and (p_app (apply _ _ edge.res.init_flag (ind I%1))) true)))))
(define T (: (! int (! int formula))
 (\ T%1 (\ T%2 (@ let22 (ind T%2) (@ let23 (p_app (apply _ _ edge.usr.y (ind T%2))) (@ let24 (p_app (apply _ _ edge.usr.x (ind T%2)))
 (and (iff let23 (and let24 (not (p_app (apply _ edge.usr.x (ind T%1))))) (and (iff (p_app (apply _ edge.impl.usr.OK (ind T%2)))
 (impl (not let24) (not let23))) (and (not (p app (apply edge.res.init flag (ind T%2)))) true)))))))
(define P (: (! int formula) (\ P%1 (p_app (apply _ _ edge.impl.usr.OK (ind P%1))))))
(define PHI (: (! int formula) (\PHI%1 (p app (apply edge.impl.usr.OK (ind PHI%1))))))
```

LFSC proof for rising edge node (cont.)

(define base

:: (1 A0 (th holds (@ lett (ind 0) (@ letz (p.app (apply __edge.usr.y (ind 0))) (@ let5 (p.app (apply __edge.ingl.usr.OK (ind 0))) (and (_ind (_ind [_ind [_

(define induction

(define implication

```
;; Proof of invariance by 1-induction
(define proof_inv
(: (invariant I T P)
    (inv-impl I T PHI P implication
        (k-ind 1 I T PHI _ base induction))))
(check proof inv)
```

LFSC proof for rising edge node (cont.)


```
;; LFSC proof produced by kind2 v1.0.alpha1-208-gae70098 and
:: CVC4 version 1.5-prerelease [ait proofs 7ba546df]
;; for frontend observational equivalence and safety
;; (depends on proof.lfsc)
:: System generated by JKind
(declare JKind.$x$ (term (arrow index Bool)))
(declare JKind.$y$ (term (arrow index Bool)))
(declare f1 (term (arrow index Bool)))
(declare JKind.$OK$ (term (arrow index Bool)))
(define I2 (: (! _ int formula) ...))
(define T2 (: (! int (! int formula)) ...))
(define P2 (: (! int formula) ...))
:: System generated for Observer
(define same inputs (: (! int formula)
 (\ same_inputs%1 (@ let73 (ind same_inputs%1)
  (iff (p_app (apply _ _ edge.usr.x let73))
       (define IO (: (! _ int formula) ...))
(define TO (: (! _ int (! _ int formula)) ...))
(define PO (: (! int formula) ...))
```

LFSC proof for rising edge node (cont.)


```
;; k-Inductive invariant for observer system
(define PHIO (: (! int formula) ...))
:: Proof of base case
(define base proof 2 ...)
:: Proof of inductive case
(define induction proof 2 ...)
:: Proof of implication
(define implication proof 2 ...)
:: Proof of invariance by 1-induction
(define proof_obs (: (invariant IO TO PO)
  (inv-impl IO TO PHIO PO implication proof 2
  (k-ind 1 IO TO PHIO base proof 2 induction proof 2))))
;; Proof of observational equivalence
(define proof obs ea
(: (weak obs eq I T P I2 T2 P2)
  (obs eq I T P I2 T2 P2 same inputs proof obs)))
:: Final proof of safety
(define proof safe
(: (safe I T P) (inv+obs I T P I2 T2 P2 proof inv proof obs eq)))
(check proof safe)
```

Checking the proof

 proved invariance (of encoded system) for 80% (rest is unsupported fragment of proofs for CVC4)

The trusted core of our approach consists in:

- 1. LFSC checker (5300 lines of C++ code)
- 2. LFSC signatures comprising the overall proof system LFSC (for a total of 444 lines of LFSC code)
- Assumption that Kind 2 and JKind do not have identical defects that could escape the observational equivalence check. (reasonable considering the differences between the two model checkers)

Current limitations

- Holes in proofs produced by CVC4 (trust_f rule):
 - pre-processing
 - · arithmetic lemmas

 Doesn't work with combination of both real and integer arithmetic for now

Conclusion

- Kind 2 generates machine checkable proofs of invariance and safety in LFSC
- Currently limited by CVC4 capabilities for proofs ...
- ... but ready for when CVC4 will produce proofs for more theories

Ongoing and future work

- Leverage proofs for tool qualification DO-178C, DO-330 (ongoing, collaboration with Rockwell Collins and NASA)
- Tests for checker and side-conditions
- Prove correctness of rules and side-conditions in a proof assistant like Coq or Isabelle

