Proof Certificates for SMT-based Model
Checkers

Alain Mebsout and Cesare Tinelli

SMT 2016
July 2", 2016

THE UNIVERSITY
| oF lowa

- Model checkers return error traces but no evidence when
they say yes

- Complex tools

- Model checkers return error traces but no evidence when
they say yes

- Complex tools
- Goal: improve trustworthiness of these tools

- Approach: produce proof certificates

- Model checkers return error traces but no evidence when
they say yes

- Complex tools
- Goal: improve trustworthiness of these tools
- Approach: produce proof certificates

- Implemented in Kind 2

Certificate generation and checking

Proof certificate production as a two-steps process

[signatures

P o
System & .. SMT
1 induction Theories |
Property P | |
l N
. validity Fy
‘ Kind 2 }qcemq—{ cVCs E s

Intermediate certificates

System 8
Property P

SMT2
certificate

[signatures

N D
k- sMT N
induction Theories||

Intermediate Certificates

(e 8D
where ¢ is k-inductive and implies the property P,
= enough to prove that P holds in § = (x,1,T)

Intermediate Certificates

(e e
where ¢ is k-inductive and implies the property P,
= enough to prove that P holds in § = (x,1,T)

Kind 2 core

an
M

Supervisor >
te->

m—> (check-sat)

Minimization of Intermediate (SMT-LIB 2) Certificates

Two dimensions:

- reduce R

- simplify inductive invariant
- simplify with unsat cores

- simplify with counter-examples to induction

Rationale: easier to check a smaller/simpler certificate

A taste of certificate minimization

(1) Trimming invariants certificate: (1, g1 A... A ¢n AP)

A AP AP AT A=P E L
N -~ J/ N\ 7

invariants property

A taste of certificate minimization

(1) Trimming invariants certificate: (1, g1 A... A ¢n AP)

A AP AP AT A=P E L
N -~ J/ N\ 7

invariants property

from unsat core: R C {(b1 ANAN (bn}

A taste of certificate minimization

(1) Trimming invariants certificate: (1, g1 A... A ¢n AP)

A AP AP AT A=P E L
N -~ J/ N\ 7

invariants property

from unsat core: R C {(b1 ANAN (bn}

RAPATERAP

A taste of certificate minimization

(1) Trimming invariants certificate: (1, g1 A... A ¢n AP)

A AP AP AT A=P E L
—_——

invariants property

from unsat core: R C {(b1 VANPIRAN (bn}

RAPATERAP
- yes: keep R
- no: restart with P:=RAP

A taste of certificate minimization (cont.)

R
—_—
(2) Cherry-picking invariants certificate: (1, ¢1 A ... A ¢n A P)

PATIP

A taste of certificate minimization (cont.)

R
—_—
(2) Cherry-picking invariants certificate: (1, ¢1 A ... A ¢n A P)

PATIP

from model M : ¢ € R such that M I?é 0

A taste of certificate minimization (cont.)

R
—_—
(2) Cherry-picking invariants certificate: (1, ¢1 A ... A ¢n A P)

PAT WP
from model M : ¢ € R such that M i?égb

P:=¢ANP R:=R\ {¢}

Front End Certificates

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression,
encodings, ...)

10

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression,
encodings, ...)

How to trust the translation from input language to
internal FOL representation ?

10

Front end certificates in Kind 2

Translation from one formalism to another are sources of error

In Kind 2,

- several intermediate representations
- many simplifications (slicing, path compression,
encodings, ...)

How to trust the translation from input language to
internal FOL representation ?

Lightweight verification akin to Multiple-Version Dissimilar
Software Verification of DO-178C (12.3.2)

10

Front end certificates in Kind 2: approach

SMT2 Front End
___________________________________ g certificate (FEC)

!
Kind 2 S1 = (x1,1,Ty) Observer of
f equivalence (OBS)
rontend P, \ —
- . Xobs = X1 W X9
Lustre ™ Trreee—> Sobs
input file -
Pops(Xobs) = X1 ~ X2
JKind Sa = (x2, 12, T»)
frontend P, Native input
| —
!
Kind 2
core
}" Previous certification chain for Kind_Zu‘:
@‘ | 5 SMT-LIB 2
@ | Y| C(Suvss Pare)
. ;

"

LFSC Proofs

Producing proofs

System 8
Property P

|

\ Kind 2 }—

M CVCh E

validity
proofs.

[signatures

D N
k- SMT [)
induction Theories||

safety
proof

13

Producing proofs of invariance

S =(s,l[s],T[s,s']) : inputsystem
P[s]: property proven invariant for S
(R, ¢[s]) : certificate produced by Kind 2

- We can formally check that ¢

1. is k-inductive
2. implies P

- Our goal: produce a detailed, self-contained and
independently machine-checkable proof

14

Proving invariance by k-induction

S =(s,l[s],T[s,s']): inputsystem
P[s]: property proven invariant for S
(R, ¢[s]) : certificate produced by Kind 2

¢ is a k-inductive strengthening of P:

I[so] A T[S0,81] A ... A T[Sk_2,8k_1] F @[So] A... A P[Sk_1]

(basey,)
?[So] A T[S0,81] A ... A @[Sk_1] AT[Sk_1,Sk] E &[Sk

(stepg)
¢ls] F P[s] (implication)

15

Proving invariance by k-induction

S =(s,l[s],T[s,s']): inputsystem
P[s]: property proven invariant for S
(R, ¢[s]) : certificate produced by Kind 2

¢ is a k-inductive strengthening of P:

I[so] A T[S0,81] A ... A T[Sk_2,8k_1] F @[So] A... A P[Sk_1]

(basey,)
?[So] A T[S0,81] A ... A @[Sk_1] AT[Sk_1,Sk] E ¢Sk

(stepg)
¢ls] = P[s] (implication)

15

Use CVC4 to generate proofs for the validity of each sub-case

Kind 2 generates a proof of invariance by k-induction and
reuses the proofs of CVC4

base step implication
\ LFSC proof / \ LFSC proof / \ LFSC proof /
‘ from / \ from / \ from '

\ CvCs . CVC4 \ oves /S

LFSC proof of

invariance and safety
constructed
by Kind 2

LFSC rules

[Signatures

N N
System 8 ol ke SMT
| induction Theories|
Property P ; ||
i sMT2 validity safety
‘ Kind 2 }%mﬁcq—{ CVCh E} g

LFSC encodings

Encoding of Lustre variables as functions over naturals
(indexes)

In Lustre

node main (a: bool) returns (OK: bool)
var b: bool;

In the LFSC signature:

(declare index sort)
(declare ind int — index)

In the LFSC proof:

(declare a (term (arrow index Bool)))
(declare b (term (arrow index Bool)))
(declare OK (term (arrow index Bool)))

LFSC encodings (cont.)

Predicates and relations over copies of the same state
~ predicates/relations over indexes

: R(S,‘,Sj) ~ RS(’7J)

19

LFSC encodings (cont.)

Predicates and relations over copies of the same state
~ predicates/relations over indexes

“ P(s)) ~ Ps(i)
) R(S,‘,Sj) ~ RS(’7J)

In the LFSC signature:

;5 relations over indexes (used for transition relation)
(define int — int — formula)

;5 sets over indexes (used for initial formula and properties)
(define int — formula)

;5 derivability judgment for invariance proofs
(declare invariant set — rel — set — type)

19

LFSC encodings (cont.)

Predicates and relations over copies of the same state
~ predicates/relations over indexes

: R(S,‘,Sj) ~ RS(’7J)

In the LFSC proof:

;5 encoding of property
(define . set
(Ai. (p_app (apply _ _ OK (int 1)))))

;5 encoding of transition relation

(define : rel
(AioAgo o))

19

LFSC rules - k-induction

(declare k-ind
II k: int. ; bound k
II I: set. ; initial states
II T: rel. ; transition relation
II P: set. ; k-inductive invariant

; formula for base case
IIrl: B = (base I T P k).

; formula for step case u b

IIr2: S = (step T P k).

us

; proof of base case
IT ub : (th_holds B).

=B =S
B= busek(l, T, P)

S= stepk(l, T,P)

; proof of step case K-IND
II us : (th_holds S). Invariant(l, T, P)

invariant I T P

20

LFSC rules — implication

(declare inv-impl
IT I: set. IIT: rel.
II P1: set. II P2: set.

;5 proof that P1 => P2
ITu:
IT k: int.
th_holds ((P1 k) = (P2 k)).

;5 proof that P1 is invariant
IIi:
invariant I T P1

invariant I T P2

u |

=P1= P2 Invariant(l, T, P1)
INV-IMPL

Invariant(l, T, P2)

21

LFSC proofs: Example

Small Lustre node: detection of rising edge:

node edge (x: bool) returns (y: bool);
var OK: bool;
let
y = false -> x and not pre x;
OK = not x => not y;
--%PROPERTY OK;
tel

22

LFSC proof for rising edge node

;5 LFSC proof produced by kind2 ve@.8.0-425-g294ec4d and CVC4
;5 from original problem ex.lus

;5 Declarations and definitions

(declare edge.usr.x (term (arrow index Bool)))

(declare edge.usr.y (term (arrow index Bool)))

(declare edge.res.init_flag (term (arrow index Bool)))

(declare edge.impl.usr.0K (term (arrow index Bool)))

(define I (: (! _ int formula)
(\ I%1 (@ let3 (ind I%1) (@ let4 (p_app (apply _ _ edge.usr.y (ind I%1))) (and (iff let4 false)
(and (iff (p_app (apply _ _ edge.impl.usr.OK (ind I%1))) (impl (not (p_app (apply _ _ edge.usr.x (ind I%1)))) (not leta)))
(and (p_app (apply _ _ edge.res.init_flag (ind I%1))) true))))))

))

(define T (: (! int (! int formula))

(\ T%1 (\ T%2 (@ let22 (ind T%2) (@ let23 (p_app (apply _ _ edge.usr.y (ind T%2))) (@ let24 (p_app (apply _ _ edge.usr.x (ind T%2)))

(and (iff let23 (and let24 (not (p_app (apply _ _ edge.usr.x (ind T%1)))))) (and (iff (p_app (apply _ _ edge.impl.usr.OK (ind T%2)))
(impl (not let24) (not let23))) (and (not (p_app (apply _ _ edge.res.init_flag (ind T%2)))) true))))))))

(define (: (! _ int for‘mula) (\ P%1 (p_app (apply _ _ edge.impl.usr.OK (ind 9%1))))))

(define (: (! _ int formula) (\ euixt (p_app (apply _ _ edge.impl.usr.0K (ind PHI%1))))))

23

LFSC proof for rising edge node (cont.)

(define
(: (! A@ (th_holds (@ letl (ind @) (@ let2 (p_app (apply _ _ edge.usr.y (ind))) (@ letS (p_app (apply _ _ edge.impl.usr.OK (ind @))) (and
(and (iff let2 false) (and (iff let5 (impl (not (p_app (apply _ _ edge.usr.x (ind @)))) (not let2))) (and (p_app (apply _
edge.res.init_flag (ind @))) true))) (not let5)))))) (holds cln)) (\ Ao (th let _pf _ (trust_f false) (\ .PA193 (th_let_pf _ (trust_f (not
false)) (\ .PA197 (decl_atom false (\ .vi (\ .al (satlem _ _ (as 13 (clausify_false (contr‘a _ .13 .PA197)))) (\ .pb3 (satlem

_ _ (asf _ _ _ .al (\ .12 (clausify_false (contra _ .PA193 12)))) S pb4 (satlem simplify _ _ _ -pb4 .pb3 .v1) (\empty
empty)))))))))))NN))

(define
(: (! A (th_holds (@ letl (ind @) (@ let3 (ind 1) (@ letd (p_app (apply _ _ edge.usr.y (ind 1))) (@ let5 (p_app (apply _ _ edge.usr.x (ind
1))) (@ letie (p_app (apply _ edge.impl.usr.0K (ind 1))) (and (and (p_app (apply _ _ edge.impl.usr.OK (ind @))) (and (iff let4 (and lets
(not (p_app (apply _ _ edge.usr.x (ind @)))))) (and (iff let1@ (impl (not let5) (not letA))) (and (not (p_app (apply _ _ edge.res.init_flag
(ind 1)))) true)))) (not 1et10)))))))) (holds cln)) (\ A@ (th_let_pf _ (trust_f false) (\ .PA193 (th_let_pf _ (trust_f (not false)) (\
.PA197 (decl_atom false (\ .vi (\ .al (satlem _ _ (ast a1l (\ .13 (clausify_false (contra _ .13 .PA197)))) (\ .pb3 (satlem .
_.al (\ .12 (clausify_false (contra _ .PA193 .12)))) (\ .pb4 (satlem_simplify _ _ _ .pb4 .pb3 .v1) (\empty empty)))))))))))))))

(define
(! %%k int (! A@ (th_holds (@ let2 (p_app (apply _ _ edge.impl.usr.OK (ind %%k))) (not (impl let2 letz)))) (hulds cn))) (\ %%k (\ Ao
(m let_pf _ (trust_f false) (\ .PA193 (th_let_pf _ (trust_f (not false)) (\ .PA197 (decl_atom false (\ .v1 1 (satlem (as
.al (\ .13 (clausify_false (contra _ .13 .PA197)))) (\ .pb3 (satlem _ _ (asf .al (\ .12 (clausify_i lese ((ontr‘a _ .PA193 12)))) &
.pb4 (satlem_simplify _ _ _ (R _ _ .pb4 .pb3 .v1) (\empty empty))))))))))))))))

)

;5 Proof of invariance by 1-induction
(define
(invariant I T P)
(inv-impl I T PHI P implication
(k-ind 1 I T PHI _ _ base induction))))

(check proof_inv)

2%

LFSC proof for rising edge node (cont.)

55

;5 LFSC proof produced by kind2 v1.0.alphal-208-gae70098 and
;5 CVC4 version 1.5-prerelease [git proofs 7ba546df]

;5 for frontend observational equivalence and safety

;5 (depends on proof.lfsc)

;5 System generated by JKind

(declare JKind.x (term (arrow index Bool)))
(declare JKind.y (term (arrow index Bool)))
(declare f1 (term (arrow index Bool)))
(declare JKind.$0K$ (term (arrow index Bool)))

(define (: (! _ int formula) ...))
(define (: (! _int (! _ int formula)) ...))
(define (: (! _ int formula) ...))

;5 System generated for Observer
(define (: (! _ int formula)
(\ same_inputs%1l (@ let73 (ind same_inputs%1)
(iff (p_app (apply _ _ edge.usr.x let73))
(p_app (apply _ _ JKind.x let73)))))))

(define (: (! _ int formula) ...))

(define (: (! _int (! _ int formula)) ...))
(define (: (! _ int formula) ...))

25

LFSC proof for rising edge node (cont.)

;5 k-Inductive invariant for observer system
(define (: (! _ int formula) ...))

;5 Proof of base case
(define 000))

;5 Proof of inductive case
(define L)

;5 Proof of implication
(define cel)

;5 Proof of invariance by 1-induction
(define (: (invariant IO TO PO)
(inv-impl IO TO PHIO PO implication_proof_2
(k-ind 1 IO TO PHIO _ _ base_proof_2 induction_proof_2))))

;5 Proof of observational equivalence
(define
(: (weak_obs_eq I T P I2 T2 P2)
(obs_eq I T P I2 T2 P2 same_inputs proof_obs)))

;5 Final proof of safety
(define
(: (safe I T P) (inv+obs I T P I2 T2 P2 proof_inv proof_obs_eq)))

(check proof_safe)
26

Checking the proof

Proof checker
proof checker
generator proof rules proof
T /T

> 1fsc-checker sat.plf smt.plf th_base.plf th_int.plf th_real.plf kind.plf proof.lfsc

signature for signature for signature for symbols fot linear signature for
SAT solving SMT (cnf + theory) EUF theory real arithmetic k-induction

(resolution) :
symbols fot linear

integer arithmetic

27

800 5 | | | | |
S+m+cvcd

600 L —ome: Srmicvod+p _
@ (S+m+cved)l+F
= (S+m+cved+p)l+F
‘0400 | |
£
'_

200 - |

0 et N imimAmITATITAT S
0 50 100 150 200 250 300

Number of problems solved

- proved invariance (of encoded system) for 80%
(rest is unsupported fragment of proofs for CVC4)

28

The trusted core of our approach consists in:

1. LFSC checker (5300 lines of C++ code)

2. LFSC signatures comprising the overall proof system LFSC
(for a total of 444 lines of LFSC code)

3. Assumption that Kind 2 and JKind do not have identical
defects that could escape the observational equivalence
check. (reasonable considering the differences between the two model

checkers)

29

Current limitations

- Holes in proofs produced by CVC4 (trust_f rule):
- pre-processing

- arithmetic lemmas

- Doesn’t work with combination of both real and integer
arithmetic for now

30

Conclusion

- Kind 2 generates machine checkable proofs of invariance
and safety in LFSC

- Currently limited by CVC4 capabilities for proofs ...

- ... but ready for when CVC4 will produce proofs for more
theories

31

Ongoing and future work

- Leverage proofs for tool qualification — DO-178C, DO-330
(ongoing, collaboration with Rockwell Collins and NASA)

- Tests for checker and side-conditions
- Prove correctness of rules and side-conditions in a proof

assistant like Coq or Isabelle

32

Thank you

	Certificate generation and checking
	Front End Certificates
	LFSC Proofs

