
SMT Techniques and Solvers
in Automated Termination Analysis

Carsten Fuhs

Birkbeck, University of London

2nd July 2016

14th Workshop on SAT Modulo Theories (SMT)
Coimbra, Portugal

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2/25

The bad news

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates
on all inputs.
That’s not even semi-decidable!
But, fear not . . .

3/25

The bad news

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates
on all inputs.

That’s not even semi-decidable!
But, fear not . . .

3/25

The bad news

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates
on all inputs.
That’s not even semi-decidable!

But, fear not . . .

3/25

The bad news

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates
on all inputs.
That’s not even semi-decidable!
But, fear not . . .

3/25

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

4/25

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

4/25

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

4/25

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

4/25

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

4/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:

1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

5/25

The rest of this talk

Termination proving in two parallel worlds

1 Term Rewrite Systems (TRSs)
2 Imperative Programs

6/25

1 Term Rewrite Systems (TRSs)

2 Imperative Programs

7/25

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

8/25

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

8/25

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

8/25

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

8/25

Why care about termination of term rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS
⇒ Termination of TRS implies termination of P

Logic programming: Prolog [Giesl et al, PPDP ’12]
(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]
Object-oriented programming: Java [Otto et al, RTA ’10]

9/25

Why care about termination of term rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS
⇒ Termination of TRS implies termination of P

Logic programming: Prolog [Giesl et al, PPDP ’12]
(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]
Object-oriented programming: Java [Otto et al, RTA ’10]

9/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .

Show termination using Dependency Pairs

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)

Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) % minus](x, y)

quot](s(x), s(y)) % minus](x, y)
quot](s(x), s(y)) % quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %

delete s→ t with s � t from DP
Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

10/25

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently
10/25

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’79]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

11/25

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’79]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

11/25

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’79]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [minus(s(x), s(y))] ≥ [minus(x, y)] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

11/25

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

12/25

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

12/25

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =



minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

12/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

13/25

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12]

14/25

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12]

14/25

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12]

14/25

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12]

14/25

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12]

14/25

Example (bits)

R =

 half(0) → 0 bits(0) → 0
half(s(0)) → 0 bits(s(x)) → s(bits(half(s(x))))

half(s(s(x))) → s(half(x))

DP =


half](s(s(x))) → half](x)

bits](s(x)) → half](s(x))

bits](s(x)) → bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) → 0 bits(0) → 0
half(s(0)) → 0 bits(s(x)) → s(bits(half(s(x))))

half(s(s(x))) → s(half(x))

DP =


half](s(s(x))) → half](x)

bits](s(x)) → half](s(x))

bits](s(x)) → bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =


half](s(s(x)))

(
%

)
half](x)

bits](s(x))
(
%

)
half](s(x))

bits](s(x))
(
%

)
bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Example (bits)

R =

 half(0) % 0 bits(0) % 0
half(s(0)) % 0 bits(s(x)) % s(bits(half(s(x))))

half(s(s(x))) % s(half(x))

DP =



half](s(s(x))) half](x)

bits](s(x)) half](s(x))

bits](s(x)) � bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x

15/25

Problem: Expressions like max(x1 − 1, 0) are no polynomials
For [s] > [t], show

[s]left > [t]right

[s]left under-approximation of [s]
[t]right over-approximation of [t]
[s]left , [t]right polynomials

Automation initially: Generate-and-test
Approx. for max(p, 0) depend on signum of constant addend of p

[s(x)] = max(x+ 1, 0) ⇒ [s(x)]right = x+ 1

[half(x)] = max(x− 1, 0) ⇒ [half(x)]right = x

Solution [Fuhs et al, SAT ’07]: Encode case analysis . . .

[f(x)] = max(af x1 + bf , 0) ⇒ [f(x)]right = af x1 + cf(x)

. . . using side constraints

(bf ≥ 0 → cf(x) = bf) ∧ (bf < 0 → cf(x) = 0)

Boolean structure in SMT quite handy!

16/25

Problem: Expressions like max(x1 − 1, 0) are no polynomials
For [s] > [t], show [s]left > [t]right

[s]left under-approximation of [s]
[t]right over-approximation of [t]
[s]left , [t]right polynomials

Automation initially: Generate-and-test
Approx. for max(p, 0) depend on signum of constant addend of p

[s(x)] = max(x+ 1, 0) ⇒ [s(x)]right = x+ 1

[half(x)] = max(x− 1, 0) ⇒ [half(x)]right = x

Solution [Fuhs et al, SAT ’07]: Encode case analysis . . .

[f(x)] = max(af x1 + bf , 0) ⇒ [f(x)]right = af x1 + cf(x)

. . . using side constraints

(bf ≥ 0 → cf(x) = bf) ∧ (bf < 0 → cf(x) = 0)

Boolean structure in SMT quite handy!

16/25

Problem: Expressions like max(x1 − 1, 0) are no polynomials
For [s] > [t], show [s]left > [t]right

[s]left under-approximation of [s]
[t]right over-approximation of [t]
[s]left , [t]right polynomials

Automation initially: Generate-and-test
Approx. for max(p, 0) depend on signum of constant addend of p

[s(x)] = max(x+ 1, 0) ⇒ [s(x)]right = x+ 1

[half(x)] = max(x− 1, 0) ⇒ [half(x)]right = x

Solution [Fuhs et al, SAT ’07]: Encode case analysis . . .

[f(x)] = max(af x1 + bf , 0) ⇒ [f(x)]right = af x1 + cf(x)

. . . using side constraints

(bf ≥ 0 → cf(x) = bf) ∧ (bf < 0 → cf(x) = 0)

Boolean structure in SMT quite handy!

16/25

Problem: Expressions like max(x1 − 1, 0) are no polynomials
For [s] > [t], show [s]left > [t]right

[s]left under-approximation of [s]
[t]right over-approximation of [t]
[s]left , [t]right polynomials

Automation initially: Generate-and-test
Approx. for max(p, 0) depend on signum of constant addend of p

[s(x)] = max(x+ 1, 0) ⇒ [s(x)]right = x+ 1

[half(x)] = max(x− 1, 0) ⇒ [half(x)]right = x

Solution [Fuhs et al, SAT ’07]: Encode case analysis . . .

[f(x)] = max(af x1 + bf , 0) ⇒ [f(x)]right = af x1 + cf(x)

. . . using side constraints

(bf ≥ 0 → cf(x) = bf) ∧ (bf < 0 → cf(x) = 0)

Boolean structure in SMT quite handy!
16/25

(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols

Recursive Path Order [Dershowitz, TCS ’82; Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
→ SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR ’09]
outperformed polynomial time algorithm [Korovin, Voronkov, IC ’03]
in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point
methods for QF_LRA?

17/25

(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols

Recursive Path Order [Dershowitz, TCS ’82; Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
→ SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR ’09]
outperformed polynomial time algorithm [Korovin, Voronkov, IC ’03]
in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point
methods for QF_LRA?

17/25

(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols

Recursive Path Order [Dershowitz, TCS ’82; Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
→ SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR ’09]
outperformed polynomial time algorithm [Korovin, Voronkov, IC ’03]
in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point
methods for QF_LRA?

17/25

Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida,
FroCoS ’13; Rocha, Meseguer, Muñoz, WRLA ’14]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes,
Giesl, JAR ’13]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

18/25

Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida,
FroCoS ’13; Rocha, Meseguer, Muñoz, WRLA ’14]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes,
Giesl, JAR ’13]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

18/25

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 → today, 4 pm

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

19/25

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 → today, 4 pm

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

19/25

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 → today, 4 pm

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

19/25

1 Term Rewrite Systems (TRSs)

2 Imperative Programs

20/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.

More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

22/25

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Ströder et al, IJCAR ’14]

In cooperation with a safety prover [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

23/25

Extensions

Proving non-termination (infinite run from initial states is possible)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16]

24/25

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years

Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures

Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants

Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization

Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation

Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers

Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today

25/25

http://termination-portal.org/wiki/Termination_Competition

References I

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart
programs. In SAS ’10, pages 117–133, 2010.

T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and
A. Rubio. SAT modulo linear arithmetic for solving polynomial
constraints. Journal of Automated Reasoning, 48(1):107–131, 2012.

M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated
detection of non-termination and NullPointerExceptions for Java
Bytecode. In FoVeOOS ’11, pages 123–141, 2012.

M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving
through cooperation. In CAV ’13, pages 413–429, 2013.

26/25

References II

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl.
Analyzing runtime and size complexity of integer programs. ACM
TOPLAS, 2016. To appear.

H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Proving
nontermination via safety. In TACAS ’14, pages 156–171, 2014.

M. Codish, Y. Fekete, C. Fuhs, J. Giesl, and J. Waldmann. Exotic
semiring constraints (extended abstract). In SMT ’12, pages 87–96,
2012a.

M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT
solving for termination proofs with recursive path orders and
dependency pairs. Journal of Automated Reasoning, 49(1):53–93,
2012b.

27/25

References III

B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Disproving
termination with overapproximation. In FMCAD ’14, pages 67–74,
2014.

B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL*
verification for infinite-state systems. In CAV ’15, Part I, pages 13–29,
2015.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279–301, 1982.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for
proving termination of term rewriting. Journal of Automated
Reasoning, 40(2–3):195–220, 2008.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl. SAT solving for termination analysis with polynomial
interpretations. In SAT ’07, pages 340–354, 2007.

28/25

References IV

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl. Maximal termination. In RTA ’08, pages 110–125,
2008a.

C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and
P. Schneider-Kamp. Search techniques for rational polynomial orders.
In AISC ’08, pages 109–124, 2008b.

C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke.
Proving termination of integer term rewriting. In RTA ’09, pages
32–47, 2009.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and improving dependency pairs. Journal of Automated Reasoning, 37
(3):155–203, 2006.

29/25

References V

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and
R. Thiemann. Automated termination proofs for Haskell by term
rewriting. ACM TOPLAS, 33(2):1–39, 2011.

J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs.
Symbolic evaluation graphs and term rewriting: A general methodology
for analyzing logic programs. In PPDP ’12, pages 1–12, 2012.

A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. In POPL ’08, pages 147–158, 2008.

N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool:
Techniques and features. Information and Computation, 205(4):
474–511, 2007.

N. Hirokawa and G. Moser. Automated complexity analysis based on
the dependency pair method. In IJCAR ’08, pages 364–379, 2008.

30/25

References VI

J. Hoffmann and Z. Shao. Type-based amortized resource analysis with
integers and arrays. Journal of Functional Programming, 25, 2015.

H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of
Automated Reasoning, 21(1):23–38, 1998.

D. E. Knuth and P. B. Bendix. Simple word problems in universal
algebras. Computational Problems in Abstract Algebra, pages
263–297, 1970.

C. Kop and N. Nishida. Term rewriting with logical constraints. In
FroCoS ’13, pages 343–358, 2013.

A. Koprowski and J. Waldmann. Max/plus tree automata for
termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

31/25

References VII

K. Korovin and A. Voronkov. Orienting rewrite rules with the
Knuth-Bendix order. Information and Computation, 183(2):165–186,
2003.

D. Lankford. On proving term rewriting systems are Noetherian.
Technical Report MTP-3, Louisiana Technical University, Ruston, LA,
USA, 1979.

D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving
termination of imperative programs using Max-SMT. In FMCAD ’13,
pages 218–225, 2013.

S. Lucas. Polynomials over the reals in proofs of termination: from
theory to practice. RAIRO - Theoretical Informatics and Applications,
39(3):547–586, 2005.

32/25

References VIII

L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime
complexity of term rewriting by dependency pairs. Journal of
Automated Reasoning, 51(1):27–56, 2013.

C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated
termination analysis of Java Bytecode by term rewriting. In RTA ’10,
pages 259–276, 2010.

A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. In VMCAI ’04, pages 239–251, 2004.

C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and
open system analysis. In WRLA ’14, pages 247–262, 2014.

T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel,
and P. Schneider-Kamp. Proving termination and memory safety for
programs with pointer arithmetic. In IJCAR ’14, pages 208–223, 2014.

33/25

References IX

A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(2):230–265, 1936.

A. M. Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69, 1949.

H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational
arithmetic. In LPAR (Dakar) ’10, pages 481–500, 2010.

H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal
of Automated Reasoning, 43(2):173–201, 2009.

34/25

	Term Rewrite Systems (TRSs)
	Imperative Programs

