
SMT Techniques and Solvers
in Automated Termination Analysis

Carsten Fuhs

Birkbeck, University of London

2nd July 2016

14th Workshop on SAT Modulo Theories (SMT)
Coimbra, Portugal



Why analyze termination?

1 Program: produces result

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1
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The bad news

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates
on all inputs.
That’s not even semi-decidable!
But, fear not . . .
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Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1
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Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ϕ, ask SMT solver

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating
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The rest of this talk

Termination proving in two parallel worlds

1 Term Rewrite Systems (TRSs)
2 Imperative Programs
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What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)
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Why care about termination of term rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS
⇒ Termination of TRS implies termination of P

Logic programming: Prolog [Giesl et al, PPDP ’12 ]
(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11 ]
Object-oriented programming: Java [Otto et al, RTA ’10 ]
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Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs
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Dependency Pairs [Arts, Giesl, TCS ’00 ]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06 ] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently
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Polynomial interpretations

Get � via polynomial interpretations [ · ] over N [Lankford ’79]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [ · ] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[ f(t1, . . . , tn)] = [ f ]([t1], . . . , [tn])

� boils down to > over N
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Example (Constraints for Division)

R =
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quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [ · ] over N with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �
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Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98 ]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system
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Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

models behavior of functions more closely
automation via SMT for QF_NIA, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05 ]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08 ]
interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
QF_NIA instances with more complex atoms

“Arctic” matrices on the max-plus semiring on N or Z (instead of
plus-times) [Koprowski, Waldmann, Acta Cyb. ’09 ]

very useful for deeply nested terms
can be encoded to QF_LIA, but (unary!) bit-blasting seems to be
faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT ’12 ]
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Example (bits)

R =

 half(0) → 0 bits(0) → 0
half(s(0)) → 0 bits(s(x)) → s(bits(half(s(x))))

half(s(s(x))) → s(half(x))

DP =


half](s(s(x))) → half](x)

bits](s(x)) → half](s(x))

bits](s(x)) → bits](half(s(x)))

Classic polynomials cannot solve bits](s(x)) � bits](half(s(x)))

Remedy: [bits]](x) = x, [s](x) = x+ 1, [half](x) = x− 1

But: Then � not well founded any more:

0 � half(0) � half(half(0)) � . . .

⇒ Solution [Hirokawa, Middeldorp, IC ’07 ]:

[half](x1) = max(x1 − 1, 0)

⇒ [half(s(x))] = max((x+ 1)− 1, 0) = x
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Problem: Expressions like max(x1 − 1, 0) are no polynomials
For [s] > [t], show

[s]left > [t]right

[s]left under-approximation of [s]
[t]right over-approximation of [t]
[s]left , [t]right polynomials

Automation initially: Generate-and-test
Approx. for max(p, 0) depend on signum of constant addend of p

[s(x)] = max(x+ 1, 0) ⇒ [s(x)]right = x+ 1

[half(x)] = max(x− 1, 0) ⇒ [half(x)]right = x

Solution [Fuhs et al, SAT ’07 ]: Encode case analysis . . .

[ f(x)] = max(af x1 + bf , 0) ⇒ [ f(x)]right = af x1 + cf(x)

. . . using side constraints

(bf ≥ 0 → cf(x) = bf ) ∧ (bf < 0 → cf(x) = 0)

Boolean structure in SMT quite handy!
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(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols

Recursive Path Order [Dershowitz, TCS ’82; Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15 ]

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70 ]
→ SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR ’09 ]
outperformed polynomial time algorithm [Korovin, Voronkov, IC ’03 ]
in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point
methods for QF_LRA?
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Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida,
FroCoS ’13; Rocha, Meseguer, Muñoz, WRLA ’14]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes,
Giesl, JAR ’13]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”
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SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 → today, 4 pm

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)
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1 Term Rewrite Systems (TRSs)

2 Imperative Programs
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

21/25



Proving termination with invariants

Example (Transition system with invariants)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [ · ] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, QF_LRA solver gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]
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Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Ströder et al, IJCAR ’14 ]

In cooperation with a safety prover [Brockschmidt, Cook, Fuhs, CAV ’13 ]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13 ]

Nowadays all SMT-based!
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Extensions

Proving non-termination (infinite run from initial states is possible)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15 ]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16]
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Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years

Term rewriting: need to encode how to represent data structures
Imperative programs on integers: need to consider reachability and
invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
Annual termCOMP:
http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today
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