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Why analyze termination?

@ Program: produces result
@ Input handler: system reacts
© Mathematical proof: the induction is valid

© Biological process: reaches a stable state

Variations of the same problem:
@ special case of @
© can be interpreted as @
@ probabilistic version of @

2/25



The bad news

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

3/25



The bad news

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

3/25



The bad news

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

@ That's not even semi-decidablel

3/25



The bad news

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

@ That's not even semi-decidablel

o But, fear not ...
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Termination analysis, classically

Turing 1949

he prooess comes to an end.
#nally the checker has to verify that t

Here :yixl:yho ahould be assisted by the programmer giving a fux"thot doﬁ.;ite
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Termination analysis, classically

Turing 1949

gl he prooess comes to an end.
#nally the checker has to verify that t

Here :y.i:]:yhe ahould be assisted by the programmer giving a fux"tbsr doﬁ.:lto
ansertion to be veriried. Thias may take the form of & quantity which 1s
asserted to deoreass oontinually and vanish when thé machino stopa.

‘Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

@ Find ranking function f (“quantity”)
@ Prove f to have a lower bound (“vanish when the machine stops”)

© Prove that [ decreases over time

Example (Termination can be simple)

while x > 0:
x=x—1
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Termination analysis, in the era of SMT solvers

Question: Does program P terminate?

Approach:
Encode termination proof template to SMT formula ¢, ask SMT solver
Answer:

@ ¢ satisfiable, model M:
= P terminating, M fills in the gaps in the termination proof

@ ¢ unsatisfiable:
= termination status of P unknown
= try a different template (proof technique)

In practice:

@ Encode only a proof step at a time
— try to prove only part of the program terminating

@ Repeat until the whole program is proved terminating
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The rest of this talk

Termination proving in two parallel worlds

@ Term Rewrite Systems (TRSs)

@ Imperative Programs
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What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)

no fixed evaluation strategy

°
°
@ no fixed order of rules to apply (Haskell: top to bottom)
@ untyped

°

no pre-defined data structures (integers, arrays, ...)
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Why care about termination of term rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS

= Termination of TRS implies termination of P
e Logic programming: Prolog [Gies| et al, PPDP '12]
o (Lazy) functional programming: Haskell [Gies| et al, TOPLAS '11]
o Object-oriented programming: Java [Otto et al, RTA '10]
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Example (Division)

minus(z,0) — =
R = minus(s(x),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) —  s(quot(minus(z,y),s(y)))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)),s(0)) —r minus(s(0),0) —x s(0)
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-
—  minus(z,y)

— 0

—  s(quot(minus(z,y),s(y)))
_>

—

_>

3.
>
c
(%]
—
R
(=)
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)>s(
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Example (Division)
minus(z, 0

minus(s(x),s

quot(0, s

quot(s(z),s

DP =

QY Y Y Y

QY LYY

minus(z, y)

0
s(quot(minus(z,y),s(y)))
minus®(z, y)

minus®(z, y)

quot (minus(z, ), s(y))

Dependency Pairs

@ For TRS R build dependency pairs DP
@ Show: No oo call sequence with DP (eval of DP's args via R)

@ Dependency Pair Framework
while DP #£ () :

(~ function calls)

(simplified):

o find well-founded order > with DPUR C =
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Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 2 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) <  s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) o minus?(z, )
DP = qUOtﬂ(S<$)7s(y)) <§> minusﬁ(as,y)
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Dependency Pairs

e For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)
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Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 2 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) <  s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) & minus?(z, )
DP = qUOtﬂ(S<$)7s(y)) (r>\_./) minusﬁ(as,y)
quot’(s(z),s(y)) Z, quotf(minus(z,y),s(y))

Dependency Pairs

e For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)
@ Dependency Pair Framework (simplified):

while DP £ :

o find well-founded order = with DPUR C =
o delete s — t with s = t from DP

e Find > automatically and efficiently Lo/as



Polynomial interpretations

Get > via polynomial interpretations [ -] over N [Lankford '79]
— ranking functions for rewriting

minus(s(z),s(y)) 7z minus(z,y)
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Polynomial interpretations

Get > via polynomial interpretations [ -] over N [Lankford '79]
— ranking functions for rewriting

Example

Va,y. x4+ 1 = [minus(s(x),s(y))] > [minus(z,y)] = =
Use [ -] with
@ [minus|(z1,x2) = 1
o [s](z1) =21+ 1

Extend to terms:
o [z]==x
° [f(tlv"‘7tn)] = [f]([tl]v"'v[tn])

> boils down to > over N
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Example (Constraints for Division)

minus(x, 0)

R = minus(s(x),s ;
s(0)

)

)

)

o
(y)) = minus(z,y)
quot(0,s(y)) == O
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

) 5, minust(e,y)

) 5, minusi(z,y)

) (%, quotf(minus(z,y),s(y))
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Example (Constraints for Division)

quot(s(z),s(y

mlnus z,0)

) minus(s(z), ()
R = { quot 0 :s(y))
(¥))

{ )
DP = )
)

X

0

LY Y Y Y

> minus®(z,y)
> minus*(z,y)

minus(z, y)

s(quot(minus(z, y),

= quot(minus(z,v),s(y))

s(y)))

Use interpretation [ - | over N with

[quot?](z1,22) = 1+ a2
[minusf|(z1,22) = 1
0 = 0

~ order solves all constraints

[quot](z1

{L‘Q)

[minus](z1, z2)

[s] (2

1)

T+ T2
T
x1+1
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Example (Constraints for Division)

mlnus z,0) 7 =
R = minus(s(z),s(y)) 2 minus(z,y)
B quot O,s(y) = O
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))
DP = {
Use interpretation [ - | over N with
[quotf](z1,22) = 1 + 29 [quot](x1,z2) = x1+ 22
[minus®|(z1,22) = 1 [minus](z1,22) = =
[0] =0 [sl(z1) = x1+1
~ order solves all constraints
~DP =1
~ termination of division algorithm proved O
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Task: Solve minus(s(x),s(y)) 7 minus(z,y)
O Fix a degree, use pol. interpretation with parametric coefficients:
[minus](z,y) = am + bmz + cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t]

Here:  Vz,y. (asbm + ascm) + (bs by — bm) @ + (bs ¢y — ¢m) y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm + ascm >0 A bsby —bm >0 A bscm —cm >0
Non-linear constraints (QF _NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over N

~ Prove termination of given term rewrite system
13/25



Extensions

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT ‘07, RTA '08]

e models behavior of functions more closely
e automation via SMT for QF NIA, more complex Boolean structure
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Example (bits)

half(0) = 0 bits(0) > 0
R = { half(s(0)) = 0 bits(s(z)) 7 s(bits(half(s(z))))
half(s(s(z))) = s(half(z))
halff(s(s(z))) =, half(z)
DP = bits* (s(z)) o half® (s(z))
bits* (s(z)) o bits* (half(s(z)))
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Example (bits)

X

half(0)
half(s(0))
half(s(s(x)))

'S
<
<

0
0

s(half(x))

bits(
bits(s(z

0
)

)
)

<
<

0
s(bits(half(s(x))))

bits*(s(z)) >  bits*(half(s(x)))
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Example (bits)

half(0) =
R = { half(s(0)) =
half(s(s(2))) Z

0
0

s(half(x))

bits(
bits(s(z

0
)

)
)

<
<

0
s(bits(half(s(x))))

- |
bits*(s(z)) >  bits*(half(s(z)))

o Classic polynomials cannot solve bits*(s(z)) > bits*(half(s(z)))
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Example (bits)

half(0) > 0 bits(0)
R = half(s(0)) = 0 bits(s())
{ half(s(s(x))) z s(half(z))

0
s(bits(half(s(x))))

<
<

- |
bits*(s(z)) >  bits*(half(s(z)))

o Classic polynomials cannot solve bits*(s(z)) > bits*(half(s(z)))
o Remedy: |[bits|(z) =z, [s](x)=x+1, [half](z)=2—1
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Example (bits)

half(0) > 0 bits(0)
R = { half(s(0)) 5 0 bits(s(z))
half(s(s(x))) z s(half(z))

0
s(bits(half(s(x))))

<
<

- |
bits*(s(z)) >  bits*(half(s(z)))

o Classic polynomials cannot solve bits*(s(z)) > bits*(half(s(z)))
o Remedy: [bits’](z) ==, [s](x)=z+1, [half](z)=2—1
@ But: Then > not well founded any more:
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Example (bits)

half(0) = O bits(0)
R = { half(s(0)) 5 0 bits(s(z))
half(s(s(x))) z s(half(z))

0
s(bits(half(s(x))))

<
<

- |
bits*(s(z)) >  bits*(half(s(z)))

o Classic polynomials cannot solve bits*(s(z)) > bits*(half(s(z)))
o Remedy: [bits’](z) =z, [s](x) =241, [half](z)=2—1
@ But: Then > not well founded any more:

0 > half(0) > half(half(0)) >
= Solution
[half](z1) = max(z1 — 1,0)
= [half(s(z))] = max((z +1) —1,0) =z
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Example (bits)

half(0) = 0O bits(0) = 0
R = { half(s(0)) = 0 bits(s(x)) 7 s(bits(half(s(x))))
half(s(s(x))) = s(half(x))

o - |

o Classic polynomials cannot solve bits*(s(z)) > bits*(half(s(z)))
o Remedy: [bits’](z) =z, [s](x) =241, [half](z)=2—1
@ But: Then > not well founded any more:

0 > half(0) > half(half(0)) >~

= Solution
[half](z1) = max(z1 — 1,0)
= [half(s(z))] = max((zx +1) — 1,0) ==
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@ Problem: Expressions like max(z; — 1,0) are no polynomials
e For [s] > [t], show

16/25



@ Problem: Expressions like max(xz; — 1,0) are no polynomials
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o [s]",[t]"™ polynomials
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Problem: Expressions like max(z; — 1,0) are no polynomials
For [s] > [t], show [s]'“* > [¢]""
o [s]"* under-approximation of [s]
o [t]"" over-approximation of [{]
o [s]",[t]"™ polynomials
Automation initially: Generate-and-test
Approx. for max(p,0) depend on signum of constant addend of p

[s(z)] = max(z+1,0) = [s(x)]"" = z+1
[half(z)] = max(z—1,0) = [half(z)]™" = =z
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Problem: Expressions like max(z; — 1,0) are no polynomials
For [s] > [t], show [s]'“* > [¢]""
o [s]"* under-approximation of [s]
o [t]"" over-approximation of [{]
o [s]",[t]"™ polynomials
Automation initially: Generate-and-test
Approx. for max(p,0) depend on signum of constant addend of p

[s(z)] = max(z+1,0) = [s(x)]”:ght = z+1
[half(z)] = max(z—1,0) = [half(z)]™" = =z
Solution : Encode case analysis ...
[ f(2)] = max(afx1 +bf,0) = [ ()] = a1+ Cfp)
. using side constraints
(bf >0 — Cf(z) = bf) A (bf <0 — C(z) = 0)
Boolean structure in SMT quite handy!
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(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols
@ Recursive Path Order [Dershowitz, TCS '82; Codish et al, JAR '11]

@ Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
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(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols
@ Recursive Path Order [Dershowitz, TCS '82; Codish et al, JAR '11]
@ Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]

@ Knuth-Bendix Order [Knuth, Bendix, CPAA "70]
— SMT-Encoding to QF LIA [Zankl, Hirokawa, Middeldorp, JAR 09
outperformed polynomial time algorithm [Korovin, Voronkov, /C 03]
in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point
methods for QF LRA?
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Further extensions

o Constrained term rewriting [Fuhs et al, RTA '09; Kop, Nishida,
FroCoS ’'13; Rocha, Meseguer, Mufioz, WRLA '14]
e term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, ...
e target language for translations from programming languages
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Further extensions

o Constrained term rewriting [Fuhs et al, RTA '09; Kop, Nishida,
FroCoS ’'13; Rocha, Meseguer, Mufioz, WRLA '14]

e term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, ...
e target language for translations from programming languages

o Complexity analysis [Hirokawa, Moser, I[JCAR '08; Noschinski, Emmes,
Giesl, JAR '13]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n?)"
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SMT solvers from termination analysis

Annual SMT-COMP, division QF _NIA

Year | Winner

2009 | Barcelogic-QF NIA
2010 | MiniSmt

2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP
2014 | AProVE

2015 | AProVE

2016 | — today, 4 pm
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SMT solvers from termination analysis

Annual SMT-COMP, division QF _NIA

Year | Winner

2009 | Barcelogic-QF NIA

2010 | MiniSmt (spin-off of TyT5)
2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP

2014 | AProVE

2015 | AProVE

2016 | — today, 4 pm

= Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)
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© Imperative Programs
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Papers on termination of imperative programs often about integers as data
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

if x>0:
while x £ 0:
x=x—1

Does this program terminate?
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Example (Imperative program)

if x>0:
while x £ 0:

Oh nol fl(—l) — 52(—1) — 51(—2) — 62(—2) — El(—?)) —
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

lo: if x>0:
while x £ 0:

— [z > 0]
bL(z) — b2) [z # 0]
lo(x) — Lli(xz—1)
0y ($) — {3 ($) [x == O]

Oh nol fl(—l) — 52(—1) — 51(—2) — 52(—2) — El(—?)) —
= Restrict initial states to /y(z) for z € Z
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

lo: if x>0:
4y while x # 0:
Lo x=x—1

b(x) —  fli(x) [z > 0]
bL(z) — b2) [z # 0]
l(z) — fli(x—1)

Oh nol fl(——l) — 52(——1) — 51(——2) — 52(——2) — El(——3) —

= Restrict initial states to /y(z) for z € Z

= Find invariant z > 0 at ¢, /s
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

lo: if x>0:
4y while x # 0:
Lo x=x—1

bo(z) — Lli(x) [z > 0]

O(z) — fla(x) [z #£0Az >0
b(x) — fli(z—1) [x>0]

O(z) — f3(x) [x==0Az > 0]

Oh nol fl(——l) — 52(——1) — 51(——2) — 52(——2) — El(——3) —

= Restrict initial states to /y(z) for z € Z

= Find invariant z > 0 at ¢, /s
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Proving termination with invariants

Example (Transition system with invariants)

b(z) — li(z) [ > 0]

lL(z) —  Lly(x) [x#0Az >0
l(z) — l(z—1) [z>0]

lL(z) — Ll3(2) [t==0Az>0]

Prove termination by ranking function [ - | with [(](z) = [41](z) =--- ==

22/25



Proving termination with invariants

Example (Transition system with invariants)

lo(x) = () [z > 0]

O(z) 7 la(x) [ #0Az >0
l(z) > lO(z—1) [z>0]

O(x) 7 l3(x) [t==0Az>0]

Prove termination by ranking function [ - | with [(](z) = [41](z) =--- ==
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Proving termination with invariants

Example (Transition system with invariants)

bo(z) = h(x) [z > 0]
O(z) 7 la(x) [ #0Az >0
l(z) > lO(z—1) [z>0]
O(x) 7 l3(x) [t==0Az>0]
Prove termination by ranking function [ - | with [(](z) = [41](z) =--- ==

Automate search using parametric ranking function:

[eo](.%') =ag+by-x, [61](1‘) =a; + b -x,
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Proving termination with invariants

Example (Transition system with invariants)

bo(z) = h(x) [z > 0]
O(z) 7 la(x) [ #0Az >0
fg(x) = 61(7‘ = 1) [x > 0]
O(x) 7 l3(x) [t==0Az>0]
Prove termination by ranking function [ - | with [(](z) = [41](z) =--- ==

Automate search using parametric ranking function:
[lo](z) = ao +bo-z, [€i)(x) =a1 + b -z,

Constraints e.g.:

x>0 = ax+by-xz>a+b-(x—1) “decrease...
x>0 =  ay+by-x>0 ... against a bound”
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Proving termination with invariants

Example (Transition system with invariants)

bo(z) = h(x) [z > 0]
O(z) 7 la(x) [ #0Az >0
fg(x) = 61(7‘ = 1) [x > 0]
O(x) 7 l3(x) [t==0Az>0]
Prove termination by ranking function [ - | with [(](z) = [41](z) =--- ==

Automate search using parametric ranking function:
[lo](z) = ao +bo-z, [€i)(x) =a1 + b -z,

Constraints e.g.:

x>0 = ax+by-x>a;+b-(x—1) “decrease...”
x>0 =  ay+by-x>0 ... against a bound”

Use Farkas' Lemma to eliminate Vz, QF LRA solver gives model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI ‘04, Alias et al, SAS '10]
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Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation [Stroder et al, [JCAR '14]

@ In cooperation with a safety prover [Brockschmidt, Cook, Fuhs, CAV '13]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD 13|

Nowadays all SMT-based!
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Extensions

@ Proving non-termination (infinite run from initial states is possible)
[Gupta et al, POPL ‘08, Brockschmidt et al, FoVeOOS '11, Chen et al,
TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD '14]

@ CTL* model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV '15]

@ Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al,
TOPLAS '16]
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Conclusion

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 15 years
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Conclusion

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 15 years

@ Term rewriting: need to encode how to represent data structures

@ Imperative programs on integers: need to consider reachability and
invariants

@ Since a few years cross-fertilization

@ Automation heavily relies on SMT solving for automation

@ Needs of termination analysis have also led to better SMT solvers

@ Annual termCOMP:

http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis
would not be where it is today
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