SMT Techniques and Solvers in Automated Termination Analysis

Carsten Fuhs

Birkbeck, University of London

2nd July 2016

14th Workshop on SAT Modulo Theories (SMT) Coimbra, Portugal

Why analyze termination?

• Program: produces result

- Program: produces result
- **2** Input handler: system reacts

- **O Program:** produces result
- **2** Input handler: system reacts
- **OMATHEMATICAL proof**: the induction is valid

- Program: produces result
- Input handler: system reacts
- **Mathematical proof**: the induction is valid
- Biological process: reaches a stable state

- **Program**: produces result
- Input handler: system reacts
- Mathematical proof: the induction is valid
- Biological process: reaches a stable state

Variations of the same problem:

- e special case of
- S can be interpreted as
- o probabilistic version of o

The question if a given program terminates on a fixed input is undecidable.

The question if a given program terminates on a fixed input is undecidable.

• We want to solve the (harder) question if a given program terminates on **all** inputs.

The question if a given program terminates on a fixed input is undecidable.

- We want to solve the (harder) question if a given program terminates on **all** inputs.
- That's not even semi-decidable!

The question if a given program terminates on a fixed input is undecidable.

- We want to solve the (harder) question if a given program terminates on **all** inputs.
- That's not even semi-decidable!
- But, fear not ...

Turing 1949

Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops.

"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

Turing 1949

Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops.

"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

• Find ranking function f ("quantity")

Turing 1949

Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops.

"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

- Find ranking function f ("quantity")
- **2** Prove *f* to have a **lower bound** ("vanish when the machine stops")

Turing 1949

Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops.

"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

- Find ranking function f ("quantity")
- **2** Prove *f* to have a **lower bound** ("vanish when the machine stops")
- **Orecases** Over time

Turing 1949

Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops.

"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

- Find ranking function f ("quantity")
- **2** Prove f to have a lower bound ("vanish when the machine stops")
- **③** Prove that f decreases over time

Example (Termination can be simple)

while x > 0: x = x - 1

Question: Does program *P* terminate?

Question: Does program *P* terminate?

Approach:

Encode termination proof template to SMT formula $\varphi \text{, ask SMT}$ solver

Question: Does program *P* terminate?

Approach:

Encode termination proof template to SMT formula φ , ask SMT solver

Answer:

Question: Does program *P* terminate?

Approach:

Encode termination proof template to SMT formula $\varphi \textsc{,}$ ask SMT solver

Answer:

- $\ \, \bullet \ \, \varphi \ \, {\rm satisfiable, \ \, model} \ \, M:$
 - $\Rightarrow P$ terminating, M fills in the gaps in the termination proof

Question: Does program *P* terminate?

Approach:

Encode termination proof template to SMT formula φ , ask SMT solver

Answer:

- φ satisfiable, model M:
 - $\Rightarrow P$ terminating, M fills in the gaps in the termination proof
- **2** φ unsatisfiable:
 - \Rightarrow termination status of P unknown
 - \Rightarrow try a different template (proof technique)

Question: Does program *P* terminate?

Approach:

Encode termination proof template to SMT formula φ , ask SMT solver

Answer:

- φ satisfiable, model M:
 - $\Rightarrow P$ terminating, M fills in the gaps in the termination proof
- 2 φ unsatisfiable:
 - \Rightarrow termination status of P unknown
 - \Rightarrow try a different template (proof technique)

In practice:

- Encode only a proof step at a time
 - \rightarrow try to prove only $\ensuremath{\textbf{part}}$ of the program terminating
- Repeat until the whole program is proved terminating

Termination proving in two parallel worlds

- Term Rewrite Systems (TRSs)
- Imperative Programs

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of "real" FP:

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- no fixed order of rules to apply (Haskell: top to bottom)
- untyped
- no pre-defined data structures (integers, arrays, ...)

Why care about termination of term rewriting?

• Termination needed by theorem provers

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS \Rightarrow Termination of TRS implies termination of P
 - Logic programming: Prolog [Giesl et al, PPDP '12]
 - (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
 - Object-oriented programming: Java [Otto et al, RTA '10]

$$\mathcal{R} = \begin{cases} \min(x,0) \to x \\ \min(s(x),s(y)) \to \min(x,y) \\ quot(0,s(y)) \to 0 \\ quot(s(x),s(y)) \to s(quot(\min(x,y),s(y))) \end{cases}$$

Term rewriting: Evaluate terms by applying rules from $\ensuremath{\mathcal{R}}$

 $\mathsf{minus}(\mathsf{s}(\mathsf{s}(0)),\mathsf{s}(0)) \ \rightarrow_{\mathcal{R}} \ \mathsf{minus}(\mathsf{s}(0),0) \ \rightarrow_{\mathcal{R}} \ \mathsf{s}(0)$

$$\mathcal{R} = \begin{cases} \min(x,0) \to x \\ \min(s(x),s(y)) \to \min(x,y) \\ quot(0,s(y)) \to 0 \\ quot(s(x),s(y)) \to s(quot(\min(x,y),s(y))) \end{cases}$$

Term rewriting: Evaluate terms by applying rules from $\ensuremath{\mathcal{R}}$

 $\mathsf{minus}(\mathsf{s}(\mathsf{s}(0)),\mathsf{s}(0)) \ \rightarrow_{\mathcal{R}} \ \mathsf{minus}(\mathsf{s}(0),0) \ \rightarrow_{\mathcal{R}} \ \mathsf{s}(0)$

Termination: No infinite evaluation sequences $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} t_3 \rightarrow_{\mathcal{R}} \ldots$

$$\mathcal{R} = \begin{cases} \min(x,0) \to x \\ \min(s(x),s(y)) \to \min(x,y) \\ quot(0,s(y)) \to 0 \\ quot(s(x),s(y)) \to s(quot(\min(x,y),s(y))) \end{cases}$$

Term rewriting: Evaluate terms by applying rules from $\ensuremath{\mathcal{R}}$

 $\mathsf{minus}(\mathsf{s}(\mathsf{s}(0)),\mathsf{s}(0)) \ \rightarrow_{\mathcal{R}} \ \mathsf{minus}(\mathsf{s}(0),0) \ \rightarrow_{\mathcal{R}} \ \mathsf{s}(0)$

Termination: No infinite evaluation sequences $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} t_3 \rightarrow_{\mathcal{R}} \dots$ Show termination using Dependency Pairs

$$\mathcal{R} = \begin{cases} \min(x,0) \to x \\ \min(s(x),s(y)) \to \min(x,y) \\ quot(0,s(y)) \to 0 \\ quot(s(x),s(y)) \to s(quot(\min(x,y),s(y))) \end{cases}$$

Dependency Pairs [Arts, Giesl, TCS '00]

$$\mathcal{R} = \begin{cases} \min(x, 0) \to x \\ \min(s(x), s(y)) \to \min(x, y) \\ quot(0, s(y)) \to 0 \\ quot(s(x), s(y)) \to s(quot(\min(x, y), s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) \to \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \to \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \to quot^{\sharp}(\min(x, y), s(y)) \end{cases}$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with \mathcal{DP} (eval of \mathcal{DP} 's args via \mathcal{R})

$$\mathcal{R} = \begin{cases} \min(x, 0) \to x \\ \min(s(x), s(y)) \to \min(x, y) \\ quot(0, s(y)) \to 0 \\ quot(s(x), s(y)) \to s(quot(\min(x, y), s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) \to \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \to \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \to quot^{\sharp}(\min(x, y), s(y)) \end{cases}$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with \mathcal{DP} (eval of \mathcal{DP} 's args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):
$$\mathcal{R} = \begin{cases} \min(x, 0) \rightarrow x \\ \min(s(x), s(y)) \rightarrow \min(x, y) \\ quot(0, s(y)) \rightarrow 0 \\ quot(s(x), s(y)) \rightarrow s(quot(\min(x, y), s(y))) \\ \mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) \rightarrow \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \rightarrow \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) \rightarrow quot^{\sharp}(\min(x, y), s(y)) \end{cases}$$

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with \mathcal{DP} (eval of \mathcal{DP} 's args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):
 while DP ≠ Ø :

$$\mathcal{R} = \begin{cases} \min(x, 0) & \succeq x \\ \min(s(x), s(y)) & \succeq \min(x, y) \\ quot(0, s(y)) & \succeq 0 \\ quot(s(x), s(y)) & \succeq s(quot(\min(x, y), s(y))) \\ \mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) & \succeq \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) & \succeq \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) & \succeq quot^{\sharp}(\min(x, y), s(y)) \end{cases}$$

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with \mathcal{DP} (eval of \mathcal{DP} 's args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):
 while DP ≠ Ø :
 - find well-founded order \succ with $\mathcal{DP} \cup \mathcal{R} \subseteq \succeq$

$$\mathcal{R} = \begin{cases} \min(x, 0) & \succeq x \\ \min(s(x), s(y)) & \succeq \min(x, y) \\ quot(0, s(y)) & \succeq 0 \\ quot(s(x), s(y)) & \succeq s(quot(\min(x, y), s(y))) \\ \end{pmatrix} \\ \mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) & (\succeq) \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y))) & (\succeq) \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y))) & (\succeq) quot^{\sharp}(\min(x, y), s(y)) \end{cases}$$

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with DP (eval of DP's args via R)
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):
 while DP ≠ ∅ :
 - find well-founded order \succ with $\mathcal{DP} \cup \mathcal{R} \subseteq \succsim$
 - delete $s \to t$ with $s \succ t$ from \mathcal{DP}

$$\mathcal{R} = \begin{cases} \min(x, 0) & \succsim & x \\ \min(s(x), s(y)) & \succsim & \min(x, y) \\ quot(0, s(y)) & \succsim & 0 \\ quot(s(x), s(y)) & \succsim & s(quot(\min(x, y), s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x), s(y))) & (\succsim) & \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) & (\succsim) & \min(s^{\sharp}(x, y)) \\ quot^{\sharp}(s(x), s(y)) & (\succsim) & quot^{\sharp}(m)(s(x, y), s(y)) \end{cases}$$

- For TRS \mathcal{R} build dependency pairs \mathcal{DP} (~ function calls)
- Show: No ∞ call sequence with DP (eval of DP's args via R)
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):
 while DP ≠ ∅ :
 - find well-founded order \succ with $\mathcal{DP} \cup \mathcal{R} \subseteq \succsim$
 - delete $s \to t$ with $s \succ t$ from \mathcal{DP}
- Find > automatically and efficiently

 $\label{eq:Get} \begin{array}{l} \mathsf{Get} \succ \mathsf{via} \ \mathsf{polynomial} \ \mathsf{interpretations} \ [\,\cdot\,] \ \mathsf{over} \ \mathbb{N} \quad [\mathsf{Lankford} \ '79] \\ \rightarrow \mathsf{ranking} \ \mathsf{functions} \ \mathsf{for} \ \mathsf{rewriting} \end{array}$

Example

$$\min(s(x), s(y)) \succeq \min(x, y)$$

 $\begin{array}{l} \mathsf{Get} \succ \mathsf{via} \ \mathsf{polynomial} \ \mathsf{interpretations} \ [\,\cdot\,] \ \mathsf{over} \ \mathbb{N} \quad [\mathsf{Lankford} \ '79] \\ \rightarrow \mathsf{ranking} \ \mathsf{functions} \ \mathsf{for} \ \mathsf{rewriting} \end{array}$

Example

$$\minus(s(x),s(y)) \succeq \minus(x,y)$$

Use $[\cdot]$ with

•
$$[minus](x_1, x_2) = x_1$$

• $[s](x_1) = x_1 + 1$

 $\label{eq:Get} \begin{array}{l} \mathsf{Get} \succ \mathsf{via} \ \mathsf{polynomial} \ \mathsf{interpretations} \ [\,\cdot\,] \ \mathsf{over} \ \mathbb{N} \quad [\mathsf{Lankford} \ '79] \\ \rightarrow \mathsf{ranking} \ \mathsf{functions} \ \mathsf{for} \ \mathsf{rewriting} \end{array}$

Example

$$\forall x, y. \quad x+1 = [\min(\mathsf{s}(x), \mathsf{s}(y))] \ge [\min(x, y)] = x$$

• [minus]
$$(x_1, x_2) = x_1$$

•
$$[s](x_1) = x_1 + 1$$

Extend to terms:

•
$$[x] = x$$

• $[f(t_1, ..., t_n)] = [f]([t_1], ..., [t_n])$

 \succ boils down to > over $\mathbb N$

Example (Constraints for Division)

$$\mathcal{R} = \begin{cases} \min(x,0) \succeq x \\ \min(s(x),s(y)) \succeq \min(x,y) \\ quot(0,s(y)) \succeq 0 \\ quot(s(x),s(y)) \succeq s(quot(\min(x,y),s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x),s(y))) \succeq \min(x,y) \\ quot^{\sharp}(s(x),s(y)) \geq \min(x,y) \\ quot^{\sharp}(s(x),s(y)) \geq \min(x,y) \\ quot^{\sharp}(s(x),s(y)) \geq \min(x,y) \end{cases}$$

Example (Constraints for Division)

$$\mathcal{R} = \begin{cases} \min(x,0) \succeq x \\ \min(s(x),s(y)) \succeq \min(x,y) \\ quot(0,s(y)) \succeq 0 \\ quot(s(x),s(y)) \succeq s(quot(\min(x,y),s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \min(s^{\sharp}(s(x),s(y))) \succ \min(s^{\sharp}(x,y)) \\ quot^{\sharp}(s(x),s(y)) \succ \min(s^{\sharp}(x,y)) \\ quot^{\sharp}(s(x),s(y)) \succ quot^{\sharp}(\min(x,y),s(y)) \end{cases}$$

Use interpretation [\cdot] over $\mathbb N$ with

 \curvearrowright order solves all constraints

Example (Constraints for Division)

$$\mathcal{R} = \begin{cases} \min(x,0) & \succeq x \\ \min(s(x),s(y)) & \succeq \min(x,y) \\ quot(0,s(y)) & \succeq 0 \\ quot(s(x),s(y)) & \succeq s(quot(\min(x,y),s(y))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \end{cases}$$

Use interpretation [\cdot] over $\mathbb N$ with

 \curvearrowright order solves all constraints $\curvearrowright \mathcal{DP} = \emptyset$

 \curvearrowright termination of division algorithm proved

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\mathsf{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

 $s \succeq t \curvearrowright [s] \ge [t]$

Here: $\forall x, y$. $(a_{\mathsf{s}} b_{\mathsf{m}} + a_{\mathsf{s}} c_{\mathsf{m}}) + (b_{\mathsf{s}} b_{\mathsf{m}} - b_{\mathsf{m}}) x + (b_{\mathsf{s}} c_{\mathsf{m}} - c_{\mathsf{m}}) y \ge 0$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

$$s \succeq t \curvearrowright [s] \ge [t]$$

Here: $\forall x, y. \ (a_{s} b_{m} + a_{s} c_{m}) + (b_{s} b_{m} - b_{m}) x + (b_{s} c_{m} - c_{m}) y \ge 0$

 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR '98]:

Here: $a_{\mathsf{s}} b_{\mathsf{m}} + a_{\mathsf{s}} c_{\mathsf{m}} \ge 0 \land b_{\mathsf{s}} b_{\mathsf{m}} - b_{\mathsf{m}} \ge 0 \land b_{\mathsf{s}} c_{\mathsf{m}} - c_{\mathsf{m}} \ge 0$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

$$s \succeq t \curvearrowright [s] \ge [t]$$

Here: $\forall x, y. \quad (a_{s} b_{m} + a_{s} c_{m}) + (b_{s} b_{m} - b_{m}) x + (b_{s} c_{m} - c_{m}) y \ge 0$

Seliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR '98]:

Here: $a_{s} b_{m} + a_{s} c_{m} \ge 0 \land b_{s} b_{m} - b_{m} \ge 0 \land b_{s} c_{m} - c_{m} \ge 0$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

$$s \succeq t \curvearrowright [s] \ge [t]$$

Here: $\forall x, y. \ (a_{s} b_{m} + a_{s} c_{m}) + (b_{s} b_{m} - b_{m}) x + (b_{s} c_{m} - c_{m}) y \ge 0$

 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR '98]:

Here: $a_{s} b_{m} + a_{s} c_{m} \ge 0 \land b_{s} b_{m} - b_{m} \ge 0 \land b_{s} c_{m} - c_{m} \ge 0$

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

$$s \succeq t \curvearrowright [s] \ge [t]$$

Here: $\forall x, y. \ (a_{s} b_{m} + a_{s} c_{m}) + (b_{s} b_{m} - b_{m}) x + (b_{s} c_{m} - c_{m}) y \ge 0$

 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR '98]:

Here: $a_{s} b_{m} + a_{s} c_{m} \ge 0 \land b_{s} b_{m} - b_{m} \ge 0 \land b_{s} c_{m} - c_{m} \ge 0$ Non-linear constraints (QF NIA), even for linear interpretations

Task: Solve $\min(s(x), s(y)) \succeq \min(x, y)$

• Fix a degree, use pol. interpretation with parametric coefficients:

 $[\operatorname{minus}](x,y) = a_{\mathsf{m}} + b_{\mathsf{m}} x + c_{\mathsf{m}} y, \quad [\mathsf{s}](x) = a_{\mathsf{s}} + b_{\mathsf{s}} x$

Prom term constraint to polynomial constraint:

$$s \succeq t \curvearrowright [s] \ge [t]$$

Here: $\forall x, y. \ (a_{s} b_{m} + a_{s} c_{m}) + (b_{s} b_{m} - b_{m}) x + (b_{s} c_{m} - c_{m}) y \ge 0$

 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR '98]:

Here: $a_{\mathsf{s}} b_{\mathsf{m}} + a_{\mathsf{s}} c_{\mathsf{m}} \ge 0 \land b_{\mathsf{s}} b_{\mathsf{m}} - b_{\mathsf{m}} \ge 0 \land b_{\mathsf{s}} c_{\mathsf{m}} - c_{\mathsf{m}} \ge 0$

Non-linear constraints (QF_NIA), even for linear interpretations

Task: Show satisfiability of non-linear constraints over $\mathbb N$ \curvearrowright Prove termination of given term rewrite system

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, *IC '07*; Fuhs et al, *SAT '07, RTA '08*]
 - models behavior of functions more closely
 - automation via SMT for QF_NIA, more complex Boolean structure

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, *IC '07*; Fuhs et al, *SAT '07, RTA '08*]
 - models behavior of functions more closely
 - automation via SMT for QF_NIA, more complex Boolean structure
- Polynomials over \mathbb{Q}^+ and \mathbb{R}^+ [Lucas, *RAIRO '05*]
 - non-integer coefficients increase proving power
 - SMT-based automation [Fuhs et al, *AISC '08*; Zankl, Middeldorp, *LPAR '10*; Borralleras et al, *JAR '12*]

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
 - models behavior of functions more closely
 - automation via SMT for QF_NIA, more complex Boolean structure
- Polynomials over \mathbb{Q}^+ and \mathbb{R}^+ [Lucas, *RAIRO '05*]
 - non-integer coefficients increase proving power
 - SMT-based automation [Fuhs et al, *AISC '08*; Zankl, Middeldorp, *LPAR '10*; Borralleras et al, *JAR '12*]
- Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
 - interpretation to vectors over \mathbb{N}^k , coefficients are matrices
 - useful for deeply nested terms
 - QF_NIA instances with more complex atoms

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, *IC '07*; Fuhs et al, *SAT '07, RTA '08*]
 - models behavior of functions more closely
 - automation via SMT for QF_NIA, more complex Boolean structure
- Polynomials over \mathbb{Q}^+ and \mathbb{R}^+ [Lucas, *RAIRO '05*]
 - non-integer coefficients increase proving power
 - SMT-based automation [Fuhs et al, *AISC '08*; Zankl, Middeldorp, *LPAR '10*; Borralleras et al, *JAR '12*]
- Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
 - $\bullet\,$ interpretation to vectors over \mathbb{N}^k , coefficients are matrices
 - useful for deeply nested terms
 - QF_NIA instances with more complex atoms
- "Arctic" matrices on the max-plus semiring on N or Z (instead of plus-times) [Koprowski, Waldmann, *Acta Cyb. '09*]
 - very useful for deeply nested terms
 - can be encoded to QF_LIA, but (unary!) bit-blasting seems to be faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT '12]

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, *IC '07*; Fuhs et al, *SAT '07, RTA '08*]
 - models behavior of functions more closely
 - automation via SMT for QF_NIA, more complex Boolean structure
- Polynomials over \mathbb{Q}^+ and \mathbb{R}^+ [Lucas, *RAIRO '05*]
 - non-integer coefficients increase proving power
 - SMT-based automation [Fuhs et al, *AISC '08*; Zankl, Middeldorp, *LPAR '10*; Borralleras et al, *JAR '12*]
- Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
 - $\bullet\,$ interpretation to vectors over \mathbb{N}^k , coefficients are matrices
 - useful for deeply nested terms
 - QF_NIA instances with more complex atoms
- "Arctic" matrices on the max-plus semiring on N or Z (instead of plus-times) [Koprowski, Waldmann, *Acta Cyb. '09*]
 - very useful for deeply nested terms
 - can be encoded to QF_LIA, but (unary!) bit-blasting seems to be faster in practice [Codish, Fekete, Fuhs, Giesl, Waldmann, SMT '12]

$$\mathcal{R} = \begin{cases} \mathsf{half}(0) \to 0\\ \mathsf{half}(\mathsf{s}(0)) \to 0\\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \end{cases}$$

$$\begin{array}{rcl} {\rm bits}(0) & \rightarrow & 0 \\ {\rm bits}({\rm s}(x)) & \rightarrow & {\rm s}({\rm bits}({\rm half}({\rm s}(x)))) \end{array}$$

$$\mathcal{R} = \begin{cases} half(0) \rightarrow 0 & bits(0) \rightarrow 0 \\ half(s(0)) \rightarrow 0 & bits(s(x)) \rightarrow s(bits(half(s(x)))) \\ half(s(s(x))) \rightarrow s(half(x)) & \\ \mathcal{DP} = \begin{cases} half^{\sharp}(s(s(x))) \rightarrow half^{\sharp}(x) \\ bits^{\sharp}(s(x)) \rightarrow half^{\sharp}(s(x)) \\ bits^{\sharp}(s(x)) \rightarrow bits^{\sharp}(half(s(x))) \end{cases}$$

$$\mathcal{R} = \begin{cases} half(0) \succeq 0 & bits(0) \succeq 0 \\ half(s(0)) \succeq 0 & bits(s(x)) \succeq s(bits(half(s(x)))) \\ half(s(s(x))) \succeq s(half(x)) & \\ \end{pmatrix} \\ \mathcal{DP} = \begin{cases} half^{\sharp}(s(s(x))) & \succeq half^{\sharp}(x) \\ bits^{\sharp}(s(x)) & (\succeq half^{\sharp}(s(x)) \\ bits^{\sharp}(s(x)) & (\succeq half^{\sharp}(s(x))) \\ bits^{\sharp}(s(x)) & (\succeq half^{\sharp}(s(x))) \\ bits^{\sharp}(s(x)) & (\succeq half^{\sharp}(s(x))) \end{cases} \end{cases}$$

$$\mathcal{R} = \left\{ \begin{array}{ccc} \mathsf{half}(0) \succeq 0 & \mathsf{bits}(0) \succeq 0 \\ \mathsf{half}(\mathsf{s}(0)) \succeq 0 & \mathsf{bits}(\mathsf{s}(x)) \succeq \mathsf{s}(\mathsf{bits}(\mathsf{half}(\mathsf{s}(x)))) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \succeq \mathsf{s}(\mathsf{half}(x)) & \\ \mathcal{DP} \end{array} \right. \\ \mathcal{DP} = \left\{ \begin{array}{c} \\ \mathsf{bits}^{\sharp}(\mathsf{s}(x)) & \succ \mathsf{bits}^{\sharp}(\mathsf{half}(\mathsf{s}(x))) \end{array} \right.$$

• Classic polynomials cannot solve $bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x)))$

$$\mathcal{R} = \begin{cases} half(0) \succeq 0 & bits(0) \succeq 0 \\ half(s(0)) \succeq 0 & bits(s(x)) \succeq s(bits(half(s(x)))) \\ half(s(s(x))) \succeq s(half(x)) & \\ \mathcal{DP} &= \begin{cases} \\ bits^{\sharp}(s(x)) & \succ & bits^{\sharp}(half(s(x))) \end{cases}$$

- Classic polynomials cannot solve $bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x)))$
- Remedy: $[bits^{\sharp}](x) = x$, [s](x) = x + 1, [half](x) = x 1

$$\mathcal{R} = \begin{cases} half(0) \succeq 0 & bits(0) \succeq 0 \\ half(s(0)) \succeq 0 & bits(s(x)) \succeq s(bits(half(s(x)))) \end{cases}$$
$$\mathcal{DP} = \begin{cases} \\ bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x))) \end{cases}$$

- Classic polynomials cannot solve $bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x)))$
- Remedy: $[bits^{\sharp}](x) = x$, [s](x) = x + 1, [half](x) = x 1
- But: Then \succ not well founded any more:

 $0 \succ \mathsf{half}(0) \succ \mathsf{half}(\mathsf{half}(0)) \succ \dots$

$$\mathcal{R} = \begin{cases} half(0) \succeq 0 & bits(0) \succeq 0 \\ half(s(0)) \succeq 0 & bits(s(x)) \succeq s(bits(half(s(x)))) \\ half(s(s(x))) \succeq s(half(x)) & \\ \mathcal{DP} = \begin{cases} \\ bits^{\sharp}(s(x)) & \succ bits^{\sharp}(half(s(x))) \end{cases}$$

- Classic polynomials cannot solve $bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x)))$
- Remedy: $[bits^{\sharp}](x) = x$, [s](x) = x + 1, [half](x) = x 1
- But: Then \succ not well founded any more:

 $0 \succ \mathsf{half}(0) \succ \mathsf{half}(\mathsf{half}(0)) \succ \dots$

 \Rightarrow Solution [Hirokawa, Middeldorp, *IC '07*]:

 $[half](x_1) = \max(x_1 - 1, 0)$

 $\Rightarrow \text{ [half(s(x))]} = \max((x+1)-1,0) = x$

$$\mathcal{R} = \begin{cases} half(0) \succeq 0 & bits(0) \succeq 0 \\ half(s(0)) \succeq 0 & bits(s(x)) \succeq s(bits(half(s(x)))) \\ half(s(s(x))) \succeq s(half(x)) & \mathcal{DP} = \end{cases}$$

- Classic polynomials cannot solve $bits^{\sharp}(s(x)) \succ bits^{\sharp}(half(s(x)))$
- Remedy: $[bits^{\sharp}](x) = x$, [s](x) = x + 1, [half](x) = x 1
- But: Then \succ not well founded any more:

 $0 \succ \mathsf{half}(0) \succ \mathsf{half}(\mathsf{half}(0)) \succ \dots$

 \Rightarrow Solution [Hirokawa, Middeldorp, *IC '07*]:

 $[half](x_1) = \max(x_1 - 1, 0)$

 $\Rightarrow \text{ [half(s(x))]} = \max((x+1) - 1, 0) = x$

- Problem: Expressions like $max(x_1 1, 0)$ are no polynomials
- For [s] > [t], show

- Problem: Expressions like $max(x_1 1, 0)$ are no polynomials
- For [s] > [t], show $[s]^{left} > [t]^{right}$
 - $[s]^{left}$ under-approximation of [s]
 - $[t]^{right}$ over-approximation of [t]
 - $[s]^{left}, [t]^{right}$ polynomials

- Problem: Expressions like $\max(x_1 1, 0)$ are no polynomials
- For [s] > [t], show $[s]^{left} > [t]^{right}$
 - $[s]^{left}$ under-approximation of [s]
 - $[t]^{right}$ over-approximation of [t]
 - $[s]^{left}, [t]^{right}$ polynomials
- Automation initially: Generate-and-test
- $\bullet\,$ Approx. for $\max(p,0)$ depend on signum of constant addend of p

$$[\mathbf{s}(x)] = \max(x+1,0) \Rightarrow [\mathbf{s}(x)]^{right} = x+1$$

$$[\mathsf{half}(x)] = \max(x-1,0) \Rightarrow [\mathsf{half}(x)]^{right} = x$$

- Problem: Expressions like $\max(x_1 1, 0)$ are no polynomials
- For [s] > [t], show $[s]^{left} > [t]^{right}$
 - $[s]^{left}$ under-approximation of [s]
 - $[t]^{right}$ over-approximation of [t]
 - $[s]^{left}, [t]^{right}$ polynomials
- Automation initially: Generate-and-test
- $\bullet\,$ Approx. for $\max(p,0)$ depend on signum of constant addend of p

$$[\mathbf{s}(x)] = \max(x+1,0) \Rightarrow [\mathbf{s}(x)]^{right} = x+1$$

$$[half(x)] = \max(x-1,0) \Rightarrow [half(x)]^{right} = x$$

• Solution [Fuhs et al, SAT '07]: Encode case analysis ...

 $[f(x)] = \max(a_f x_1 + b_f, 0) \quad \Rightarrow \quad [f(x)]^{right} = a_f x_1 + c_{f(x)}$

... using side constraints

$$(b_f \ge 0 \rightarrow c_{f(x)} = b_f) \wedge (b_f < 0 \rightarrow c_{f(x)} = 0)$$

• Boolean structure in SMT quite handy!
(SAT and) SMT solving for path orders

Path orders: based on precedences of function symbols

- Recursive Path Order [Dershowitz, TCS '82; Codish et al, JAR '11]
- Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]

Path orders: based on precedences of function symbols

- Recursive Path Order [Dershowitz, TCS '82; Codish et al, JAR '11]
- Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
- Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
 → SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR '09] outperformed polynomial time algorithm [Korovin, Voronkov, IC '03] in experiments

Path orders: based on precedences of function symbols

- Recursive Path Order [Dershowitz, TCS '82; Codish et al, JAR '11]
- Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
- Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
 → SMT-Encoding to QF_LIA [Zankl, Hirokawa, Middeldorp, JAR '09] outperformed polynomial time algorithm [Korovin, Voronkov, IC '03] in experiments

Analogy: Exponential-time simplex vs. polynomial-time interior-point methods for QF_LRA ?

- Constrained term rewriting [Fuhs et al, *RTA '09*; Kop, Nishida, *FroCoS '13*; Rocha, Meseguer, Muñoz, *WRLA '14*]
 - term rewriting with predefined operations from SMT theories, e.g. integer arithmetic, ...
 - target language for translations from programming languages

- Constrained term rewriting [Fuhs et al, *RTA '09*; Kop, Nishida, *FroCoS '13*; Rocha, Meseguer, Muñoz, *WRLA '14*]
 - term rewriting with predefined operations from SMT theories, e.g. integer arithmetic, ...
 - target language for translations from programming languages
- Complexity analysis [Hirokawa, Moser, *IJCAR '08*; Noschinski, Emmes, Giesl, *JAR '13*]

Can re-use termination machinery to infer and prove statements like "runtime complexity of this TRS is in $\mathcal{O}(n^3)$ "

Annual SMT-COMP, division QF_NIA

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt
2011	AProVE
2012	no QF_NIA
2013	no SMT-COMP
2014	AProVE
2015	AProVE
2016	ightarrow today, 4 pm

Annual SMT-COMP, division QF_NIA

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt (spin-off of T_TT_2)
2011	AProVE
2012	no QF_NIA
2013	no SMT-COMP
2014	AProVE
2015	AProVE
2016	ightarrow today, 4 pm

 \Rightarrow Termination provers can also be successful SMT solvers!

Annual SMT-COMP, division QF_NIA

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt (spin-off of T_TT_2)
2011	AProVE
2012	no QF_NIA
2013	no SMT-COMP
2014	AProVE
2015	AProVE
2016	ightarrow today, 4 pm

⇒ Termination provers can also be successful SMT solvers!
 (disclaimer: Z3 participated only *hors concours* in the last years)

Example (Imperative program)

$$f x \ge 0$$
:
while $x \ne 0$:
 $x = x -$

Does this program terminate?

Example (Imperative	program)	
-----------	------------	----------	--

 $\begin{array}{ll} \ell_0 \colon & \text{if } x \geq 0 \colon \\ \ell_1 \colon & \text{while } x \neq 0 \colon \\ \ell_2 \colon & x = x - 1 \end{array}$

Does this program terminate?

Example (Equivalent translation to transition system)				
$\ell_0(x)$	\rightarrow	$\ell_1(x)$	$[x \ge 0]$	
$\ell_1(x)$	\rightarrow	$\ell_2(x)$	$[x \neq 0]$	
$\ell_2(x)$	\rightarrow	$\ell_1(x-1)$		
$\ell_1(x)$	\rightarrow	$\ell_3(x)$	[x == 0]	

 $\begin{array}{ll} \ell_0 \colon & \text{if } x \geq 0 \colon \\ \ell_1 \colon & \text{while } x \neq 0 \colon \\ \ell_2 \colon & x = x - 1 \end{array}$

Does this program terminate?

Example (Equivalent translation to transition system)					
$\ell_0(x)$	\rightarrow	$\ell_1(x)$	$[x \ge 0]$		
$\ell_1(x)$	\rightarrow	$\ell_2(x)$	$[x \neq 0]$		
$\ell_2(x)$	\rightarrow	$\ell_1(x-1)$			
$\ell_1(x)$	\rightarrow	$\ell_3(x)$	[x == 0]		

Oh no! $\ell_1(-1) \to \ell_2(-1) \to \ell_1(-2) \to \ell_2(-2) \to \ell_1(-3) \to \cdots$

 $\begin{array}{ll} \ell_0 \colon & \text{if } x \geq 0 \colon \\ \ell_1 \colon & \text{while } x \neq 0 \colon \\ \ell_2 \colon & x = x - 1 \end{array}$

Does this program terminate?

Example (Equivalent translation to transition system)					
$\ell_0(x)$	\rightarrow	$\ell_1(x)$	$[x \ge 0]$		
$\ell_1(x)$	\rightarrow	$\ell_2(x)$	$[x \neq 0]$		
$\ell_2(x)$	\rightarrow	$\ell_1(x-1)$			
$\ell_1(x)$	\rightarrow	$\ell_3(x)$	[x == 0]		

Oh no! $\ell_1(-1) \rightarrow \ell_2(-1) \rightarrow \ell_1(-2) \rightarrow \ell_2(-2) \rightarrow \ell_1(-3) \rightarrow \cdots$

 \Rightarrow Restrict initial states to $\ell_0(z)$ for $z \in \mathbb{Z}$

Example	Imperative	program)	
---------	------------	----------	--

 $\begin{array}{ll} \ell_0 \colon & \text{if } x \geq 0 \colon \\ \ell_1 \colon & \text{while } x \neq 0 \colon \\ \ell_2 \colon & x = x - 1 \end{array}$

Does this program terminate?

Example (Equivalent translation to transition system)					
$\ell_0(x)$	\rightarrow	$\ell_1(x)$	$[x \ge 0]$		
$\ell_1(x)$	\rightarrow	$\ell_2(x)$	$[x \neq 0]$		
$\ell_2(x)$	\rightarrow	$\ell_1(x-1)$			
$\ell_1(x)$	\rightarrow	$\ell_3(x)$	[x == 0]		

Oh no! $\ell_1(-1) \to \ell_2(-1) \to \ell_1(-2) \to \ell_2(-2) \to \ell_1(-3) \to \cdots$

 $\Rightarrow \text{Restrict initial states to } \ell_0(z) \text{ for } z \in \mathbb{Z} \\ \Rightarrow \text{Find invariant } x \ge 0 \text{ at } \ell_1, \ell_2$

 $\begin{array}{ll} \ell_0 \colon & \text{if } x \geq 0 \colon \\ \ell_1 \colon & \text{while } x \neq 0 \colon \\ \ell_2 \colon & x = x - 1 \end{array}$

Does this program terminate?

Example (Equivalent translation to transition system)				
l	$C_0(x)$	\rightarrow	$\ell_1(x)$	$[x \ge 0]$
l	$f_1(x)$	\rightarrow	$\ell_2(x)$	$[x \neq 0 \land x \ge 0]$
l	$C_2(x)$	\rightarrow	$\ell_1(x-1)$	$[x \ge 0]$
l	$f_1(x)$	\rightarrow	$\ell_3(x)$	$[x == 0 \land x \ge 0]$

Oh no! $\ell_1(-1) \to \ell_2(-1) \to \ell_1(-2) \to \ell_2(-2) \to \ell_1(-3) \to \cdots$

⇒ Restrict initial states to $\ell_0(z)$ for $z \in \mathbb{Z}$ ⇒ Find invariant $x \ge 0$ at ℓ_1, ℓ_2

Example (Transition system with invariants)

$$\begin{array}{lll} \ell_0(x) & \to & \ell_1(x) & [x \ge 0] \\ \ell_1(x) & \to & \ell_2(x) & [x \ne 0 \land x \ge 0] \\ \ell_2(x) & \to & \ell_1(x-1) & [x \ge 0] \\ \ell_1(x) & \to & \ell_3(x) & [x = = 0 \land x \ge 0] \end{array}$$

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Example (Transition system with invariants)

$$\begin{array}{lll} \ell_0(x) & \succsim & \ell_1(x) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_2(x) & [x \ne 0 \land x \ge 0] \\ \ell_2(x) & \succ & \ell_1(x-1) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_3(x) & [x == 0 \land x \ge 0] \end{array}$$

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Example (Transition system with invariants)

$$\begin{array}{lll} \ell_0(x) & \succsim & \ell_1(x) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_2(x) & [x \ne 0 \land x \ge 0] \\ \ell_2(x) & \succ & \ell_1(x-1) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_3(x) & [x == 0 \land x \ge 0] \end{array}$$

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Automate search using parametric ranking function:

$$[\ell_0](x) = a_0 + b_0 \cdot x, \quad [\ell_1](x) = a_1 + b_1 \cdot x, \quad \dots$$

Example (Transition system with invariants)

$$\begin{array}{lll} \ell_0(x) & \succsim & \ell_1(x) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_2(x) & [x \ne 0 \land x \ge 0] \\ \hline \ell_2(x) & \succ & \ell_1(x-1) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_3(x) & [x == 0 \land x \ge 0] \end{array}$$

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Automate search using parametric ranking function:

$$[\ell_0](x) = a_0 + b_0 \cdot x, \quad [\ell_1](x) = a_1 + b_1 \cdot x, \quad \dots$$

Constraints e.g.:

$$\begin{array}{lll} x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x > a_1 + b_1 \cdot (x - 1) & \text{``decrease } \dots \text{''} \\ x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x \geq 0 & \text{``... against a bound''} \end{array}$$

Example (Transition system with invariants)

$$\begin{array}{lll} \ell_0(x) & \succsim & \ell_1(x) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_2(x) & [x \ne 0 \land x \ge 0] \\ \hline \ell_2(x) & \succ & \ell_1(x-1) & [x \ge 0] \\ \ell_1(x) & \succsim & \ell_3(x) & [x == 0 \land x \ge 0] \end{array}$$

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Automate search using parametric ranking function:

$$[\ell_0](x) = a_0 + b_0 \cdot x, \quad [\ell_1](x) = a_1 + b_1 \cdot x, \quad \dots$$

Constraints e.g.:

$$\begin{array}{lll} x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x > a_1 + b_1 \cdot (x - 1) & \text{``decrease } \dots \text{''} \\ x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x \geq 0 & \text{''} \dots \text{ against a bound''} \end{array}$$

Use Farkas' Lemma to eliminate $\forall x$, QF_LRA solver gives model for a_i , b_i .

Example (Transition system with invariants)

Prove termination by ranking function [\cdot] with $[\ell_0](x) = [\ell_1](x) = \cdots = x$

Automate search using parametric ranking function:

$$[\ell_0](x) = a_0 + b_0 \cdot x, \quad [\ell_1](x) = a_1 + b_1 \cdot x, \quad \dots$$

Constraints e.g.:

$$\begin{array}{lll} x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x > a_1 + b_1 \cdot (x - 1) & \text{``decrease } \dots \text{''} \\ x \geq 0 & \Rightarrow & a_2 + b_2 \cdot x \geq 0 & \text{''} \dots \text{ against a bound''} \end{array}$$

Use Farkas' Lemma to eliminate $\forall x$, QF_LRA solver gives model for a_i , b_i . More: [Podelski, Rybalchenko, VMCAI '04, Alias et al, SAS '10] Termination prover needs to find invariants for programs on integers

- Statically before the translation [Ströder et al, IJCAR '14]
- In cooperation with a safety prover [Brockschmidt, Cook, Fuhs, CAV '13]
- Using Max-SMT [Larraz, Oliveras, Rodríguez-Carbonell, Rubio, *FMCAD '13*]

Nowadays all SMT-based!

- Proving *non*-termination (infinite run from initial states is possible) [Gupta et al, *POPL '08*, Brockschmidt et al, *FoVeOOS '11*, Chen et al, *TACAS '14*, Larraz et al, *CAV '14*, Cook et al, *FMCAD '14*]
- CTL* model checking for *infinite* state systems based on termination and non-termination provers [Cook, Khlaaf, Piterman, *CAV* '15]
- Complexity bounds

[Alias et al, *SAS '10*, Hoffmann, Shao, *JFP '15*, Brockschmidt et al, *TOPLAS '16*]

 \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants
- Since a few years cross-fertilization

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants
- Since a few years cross-fertilization
- Automation heavily relies on SMT solving for automation

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants
- Since a few years cross-fertilization
- Automation heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants
- Since a few years cross-fertilization
- Automation heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers
- Annual termCOMP:

http://termination-portal.org/wiki/Termination_Competition

- \bullet Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last \sim 15 years
- Term rewriting: need to encode how to represent data structures
- Imperative programs on integers: need to consider reachability and invariants
- Since a few years cross-fertilization
- Automation heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers
- Annual termCOMP:

http://termination-portal.org/wiki/Termination_Competition

Without SAT and SMT solving, push-button termination analysis would not be where it is today

- C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, program termination, and complexity bounds of flowchart programs. In SAS '10, pages 117–133, 2010.
- T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. *Theoretical Computer Science*, 236(1-2):133–178, 2000.
- C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. SAT modulo linear arithmetic for solving polynomial constraints. *Journal of Automated Reasoning*, 48(1):107–131, 2012.
- M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of non-termination and NullPointerExceptions for Java Bytecode. In *FoVeOOS '11*, pages 123–141, 2012.
 - M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through cooperation. In *CAV '13*, pages 413–429, 2013.

- M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size complexity of integer programs. ACM TOPLAS, 2016. To appear.
- H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O'Hearn. Proving nontermination via safety. In *TACAS* '14, pages 156–171, 2014.
- M. Codish, Y. Fekete, C. Fuhs, J. Giesl, and J. Waldmann. Exotic semiring constraints (extended abstract). In SMT '12, pages 87–96, 2012a.
 - M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for termination proofs with recursive path orders and dependency pairs. *Journal of Automated Reasoning*, 49(1):53–93, 2012b.

References III

- B. Cook, C. Fuhs, K. Nimkar, and P. W. O'Hearn. Disproving termination with overapproximation. In *FMCAD* '14, pages 67–74, 2014.
- B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL* verification for infinite-state systems. In CAV '15, Part I, pages 13–29, 2015.
- N. Dershowitz. Orderings for term-rewriting systems. *Theoretical Computer Science*, 17(3):279–301, 1982.
- J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of term rewriting. *Journal of Automated Reasoning*, 40(2–3):195–220, 2008.
- C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT solving for termination analysis with polynomial interpretations. In *SAT '07*, pages 340–354, 2007.

- C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal termination. In *RTA '08*, pages 110–125, 2008a.
- C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp. Search techniques for rational polynomial orders. In AISC '08, pages 109–124, 2008b.
- C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term rewriting. In *RTA '09*, pages 32–47, 2009.
- J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs. *Journal of Automated Reasoning*, 37 (3):155–203, 2006.
- J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated termination proofs for Haskell by term rewriting. *ACM TOPLAS*, 33(2):1–39, 2011.
- J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic evaluation graphs and term rewriting: A general methodology for analyzing logic programs. In *PPDP '12*, pages 1–12, 2012.
- A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving non-termination. In *POPL '08*, pages 147–158, 2008.
- N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features. *Information and Computation*, 205(4): 474–511, 2007.
- N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair method. In *IJCAR '08*, pages 364–379, 2008.

- J. Hoffmann and Z. Shao. Type-based amortized resource analysis with integers and arrays. *Journal of Functional Programming*, 25, 2015.
- H. Hong and D. Jakuš. Testing positiveness of polynomials. *Journal of Automated Reasoning*, 21(1):23–38, 1998.
- D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. *Computational Problems in Abstract Algebra*, pages 263–297, 1970.
- C. Kop and N. Nishida. Term rewriting with logical constraints. In *FroCoS '13*, pages 343–358, 2013.
 - A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

- K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Information and Computation, 183(2):165–186, 2003.
- D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
- D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving termination of imperative programs using Max-SMT. In *FMCAD* '13, pages 218–225, 2013.
- S. Lucas. Polynomials over the reals in proofs of termination: from theory to practice. RAIRO - Theoretical Informatics and Applications, 39(3):547–586, 2005.

- L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term rewriting by dependency pairs. *Journal of Automated Reasoning*, 51(1):27–56, 2013.
- C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated termination analysis of Java Bytecode by term rewriting. In *RTA* '10, pages 259–276, 2010.
- A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. In *VMCAI '04*, pages 239–251, 2004.
 - C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and open system analysis. In WRLA '14, pages 247–262, 2014.
 - T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, and P. Schneider-Kamp. Proving termination and memory safety for programs with pointer arithmetic. In *IJCAR* '14, pages 208–223, 2014.

- A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society*, 42(2):230–265, 1936.
- A. M. Turing. Checking a large routine. In *Report of a Conference on High Speed Automatic Calculating Machines*, pages 67–69, 1949.
- H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In *LPAR (Dakar) '10*, pages 481–500, 2010.
- H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. *Journal of Automated Reasoning*, 43(2):173–201, 2009.