Extending the Theory of Arrays:

 memset, memcpy, and Beyond
Stephan Falke, Florian Merz, and Carsten Sinz

INSTITUTE FOR THEORETICAL COMPUTER SCIENCE (ITI)

Motivation

- SMT-solvers are routinely used in program analysis:
- Deductive program verification
- Symbolic execution
- Software bounded model checking

Motivation

- SMT-solvers are routinely used in program analysis:
- Deductive program verification
- Symbolic execution
- Software bounded model checking
- ..
- Prominent theory: $\mathcal{T}_{\mathcal{A}}$ (theory of arrays)
- Model arrays/structures/objects in the program
- Model main memory

$\mathcal{T}_{\mathcal{A}}$: The Theory of Arrays

index terms	$t_{\mathrm{t}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{1}\right)$
array terms	$t_{\mathrm{A}}::=a \mid \operatorname{write}\left(t_{\mathrm{A}}, t_{\mathrm{l}}, t_{\mathrm{E}}\right)$

$\mathcal{T}_{\mathcal{A}}$: The Theory of Arrays

index terms	$t_{\mathrm{l}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{l}}\right)$
array terms	$t_{\mathrm{A}}::=a \mid \operatorname{write}\left(t_{\mathrm{A}}, t_{\mathrm{t}}, t_{\mathrm{E}}\right)$

$$
\begin{aligned}
p=r & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
\neg(p=r) & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r)
\end{aligned}
$$

$\mathcal{T}_{\mathcal{A}}$: The Theory of Arrays

index terms	$t_{\mathrm{t}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{l}}\right)$
array terms	$t_{\mathrm{A}}::=a \mid \operatorname{write}\left(t_{\mathrm{A}}, t_{1}, t_{\mathrm{E}}\right)$

a write modifies the position written to

$$
\begin{aligned}
p=r & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
\neg(p=r) & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r)
\end{aligned}
$$

$\mathcal{T}_{\mathcal{A}}$: The Theory of Arrays

index terms	$t_{\mathrm{t}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{t}}\right)$
array terms	$t_{\mathrm{A}}::=a \mid \operatorname{write}\left(t_{\mathrm{A}}, t_{1}, t_{\mathrm{E}}\right)$

a write modifies the position written to

$$
p=r \quad \Longrightarrow \quad \operatorname{read}(\text { write }(a, p, v), r)=v
$$

$$
\longrightarrow \neg(p=r) \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r)
$$

\ldots and nothing else

Motivation

How to model standard library functions such as memset and memcpy?

```
void *memset(void *dst, int c, size_t n);
void *memcpy(void *dst, const void *src, size_t n);
```


Motivation

How to model standard library functions such as memset and memcpy?
might not be constant!
void *memset(void *dst, int c, size_t n);
might not Be constant!
void *memcpy (void *dst, const void *src, size_t n);

Motivation

memcpy ($\mathrm{a}, \mathrm{b}, 4$);

Motivation

$$
a_{1}=\operatorname{write}(a, 0, \operatorname{read}(b, 0))
$$

```
memcpy(a, b, 4);
```


Motivation

$$
\begin{aligned}
& a_{1}=\operatorname{write}(a, 0, \operatorname{read}(b, 0)) \\
& a_{2}=\operatorname{write}\left(a_{1}, 1, \operatorname{read}(b, 1)\right)
\end{aligned}
$$

memcpy (a, b, 4);
. . .

Motivation

$$
\begin{aligned}
& a_{1}=\operatorname{write}(a, 0, \operatorname{read}(b, 0)) \\
& a_{2}=\operatorname{write}\left(a_{1}, 1, \operatorname{read}(b, 1)\right) \\
& a_{3}=\operatorname{write}\left(a_{2}, 2, \operatorname{read}(b, 2)\right)
\end{aligned}
$$

Motivation

$$
\begin{aligned}
a_{1} & =\operatorname{write}(a, 0, \operatorname{read}(b, 0)) \\
a_{2} & =\operatorname{write}\left(a_{1}, 1, \operatorname{read}(b, 1)\right) \\
a_{3} & =\operatorname{write}\left(a_{2}, 2, \operatorname{read}(b, 2)\right) \\
a^{\prime} & =\operatorname{write}\left(a_{3}, 3, \operatorname{read}(b, 3)\right)
\end{aligned}
$$

Motivation

$$
\begin{aligned}
a_{1} & =\operatorname{write}(a, 0, \operatorname{read}(b, 0)) \\
a_{2} & =\operatorname{write}\left(a_{1}, 1, \operatorname{read}(b, 1)\right) \\
a_{3} & =\operatorname{write}\left(a_{2}, 2, \operatorname{read}(b, 2)\right) \\
a^{\prime} & =\operatorname{write}\left(a_{3}, 3, \operatorname{read}(b, 3)\right)
\end{aligned}
$$

Does not scale well for large constants

Motivation

Motivation

```
memcpy(a, b, n);???
```


Motivation

$\operatorname{memcpy}(a, b, n) ; \quad a^{\prime}=\operatorname{copy}(a, 0, b, 0, n)$

Motivation

memcpy ($\mathrm{a}, \mathrm{b}, \mathrm{n}$) ;
$a^{\prime}=\lambda i . \operatorname{ITE}(0 \leq i<n, \operatorname{read}(b, i), \operatorname{read}(a, i))$

Motivation

```
memcpy(a, b, n);
a' = \lambdai. ITE (0 \leqi<n, read (b,i), read (a,i))
```

\Longrightarrow Extend $\mathcal{T}_{\mathcal{A}}$ by λ-terms that describe arrays

Motivation

```
memset(a, v, n);
```


Motivation

memset $(\mathrm{a}, \mathrm{v}, \mathrm{n})$;

$$
a^{\prime}=\lambda i . \operatorname{ITE}(0 \leq i<n, v, \operatorname{read}(a, i))
$$

Motivation

```
int i, j, n = ...;
int *a = malloc(2 * n * sizeof(int));
for (i = 0; i < n; ++i) {
    a[i] = i + 1;
}
for (j = n; j < 2 * n; ++j) {
    a[j] = 2 * j;
}
```


Motivation

```
int i, j, n = ...;
int *a = malloc(2 * n * sizeof(int));
for (i = 0; i < n; ++i) {
    a[i] = i + 1;
}
for (j = n; j < 2 * n; ++j) {
        a[j] = 2 * j;
}
```

$$
a^{\prime}=\lambda i . \operatorname{ITE}(0 \leq i<n, i+1, \operatorname{read}(a, i))
$$

Motivation

```
int i, j, n = ...;
int *a = malloc(2 * n * sizeof(int));
for (i = 0; i < n; ++i) {
    a[i] = i + 1;
}
for (j = n; j < 2 * n; ++j) {
        a[j] = 2 * j;
}
```

$$
\begin{aligned}
a^{\prime} & =\lambda i \cdot \operatorname{ITE}(0 \leq i<n, i+1, \operatorname{read}(a, i)) \\
a^{\prime \prime} & =\lambda j . \operatorname{ITE}\left(n \leq j<2 * n, 2 * j, \operatorname{read}\left(a^{\prime}, j\right)\right)
\end{aligned}
$$

Contributions

(1) $\mathcal{T}_{\lambda \mathcal{A}}$: an extension of $\mathcal{T}_{\mathcal{A}}$ with λ-terms

Contributions

(1) $\mathcal{T}_{\lambda \mathcal{A}}$: an extension of $\mathcal{T}_{\mathcal{A}}$ with λ-terms
(2) Satisfiability checking for $\mathcal{T}_{\lambda \mathcal{A}}$

$\mathcal{T}_{\lambda \mathcal{A}}$: The Theory of Arrays with λ-Terms

index terms	$t_{\mathrm{I}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{l}}\right)$
array terms	$t_{\mathrm{A}}::=a \mid \operatorname{write}\left(t_{\mathrm{A}}, t_{\mathrm{l}}, t_{\mathrm{E}}\right)$

$$
\begin{aligned}
p=r & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
\neg(p=r) & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r)
\end{aligned}
$$

$\mathcal{T}_{\lambda \mathcal{A}}$: The Theory of Arrays with λ-Terms

index terms	$t_{\mathrm{l}}::=\ldots$
element terms	$t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{l}}\right)$
array terms	$t_{\mathrm{A}}::=a\left\|\operatorname{write}\left(t_{\mathrm{A}}, t_{\mathrm{l}}, t_{\mathrm{E}}\right)\right\| \lambda i . t_{\mathrm{E}}$

$$
\begin{aligned}
p=r & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
\neg(p=r) & \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r)
\end{aligned}
$$

$\mathcal{T}_{\lambda \mathcal{A}}$: The Theory of Arrays with λ-Terms

$$
\begin{gathered}
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { index terms } \\
\text { element terms } \\
\text { array terms }
\end{array} & \begin{array}{l}
t_{1}::=\ldots \\
t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{t}}\right) \\
t_{\mathrm{A}}::=a\left|\operatorname{write}\left(t_{\mathrm{A}}, t_{1}, t_{\mathrm{E}}\right)\right| \lambda i . t_{\mathrm{E}}
\end{array} \\
\hline p=r \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
\neg(p=r) \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r) \\
\operatorname{read}(\lambda i . s, r)=s[i / r]
\end{array}
\end{gathered}
$$

$\mathcal{T}_{\lambda \mathcal{A}}$: The Theory of Arrays with λ-Terms

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline \text { index terms } & t_{\mathrm{I}}::=\ldots \\
\text { element terms } & t_{\mathrm{E}}::=\ldots \mid \operatorname{read}\left(t_{\mathrm{A}}, t_{\mathrm{l}}\right) \\
\text { array terms } & t_{\mathrm{A}}::=a\left|\operatorname{write}\left(t_{\mathrm{A}}, t_{\mathrm{I}}, t_{\mathrm{E}}\right)\right| \lambda i . t_{\mathrm{E}} \\
\hline
\end{array} \\
& p=r \quad \Longrightarrow \quad \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
& \neg(p=r) \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r) \\
& \longrightarrow \operatorname{read}(\lambda i . s, r)=s[i / r] \\
& \beta \text {-reduction }
\end{aligned}
$$

$\mathcal{T}_{\lambda \mathcal{A}}$: The Theory of Arrays with λ-Terms

$$
\begin{aligned}
& p=r \quad \Longrightarrow \quad \operatorname{read}(\operatorname{write}(a, p, v), r)=v \\
& \neg(p=r) \Longrightarrow \operatorname{read}(\operatorname{write}(a, p, v), r)=\operatorname{read}(a, r) \\
& \longrightarrow \operatorname{read}(\lambda i . s, r)=s[i / r] \\
& \beta \text {-reduction }
\end{aligned}
$$

write (a, p, v) could be simulated using λi. ITE $(p=i, v, \operatorname{read}(a, i))$

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops
- Zero initialization of global variables

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops
- Zero initialization of global variables
- Zero initialization of fresh memory pages

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops
- Zero initialization of global variables
- Zero initialization of fresh memory pages
- "Havoc" memory regions (volatile variables)

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops
- Zero initialization of global variables
- Zero initialization of fresh memory pages
- "Havoc" memory regions (volatile variables)
- Model memory mapped I/O

Uses of $\mathcal{T}_{\lambda \mathcal{A}}$

- Precisely model memset and memcpy
- Summarize loops
- Zero initialization of global variables
- Zero initialization of fresh memory pages
- "Havoc" memory regions (volatile variables)
- Model memory mapped I/O
- Attaching metadata to memory regions (allocated, de-allocated, ...)

Loop Summarization Using $\mathcal{T}_{\lambda \mathcal{A}}$

- Broadly speaking:
- loop iterations do not depend on earlier iterations
- consecutive iterations update consecutive array locations

Loop Summarization Using $\mathcal{T}_{\lambda \mathcal{A}}$

- Broadly speaking:
- loop iterations do not depend on earlier iterations
- consecutive iterations update consecutive array locations
- More precisely:
- Induction variable i is incremented by one in each iteration
- $i^{\text {th }}$ iteration unconditionally updates only a[i]
- No other variable declared outside the loop is modified
- $i^{\text {th }}$ iteration of the loop may not use elements of a that have been modified in earlier iterations

Loop Summarization Using $\mathcal{T}_{\lambda \mathcal{A}}$

- Broadly speaking:
- loop iterations do not depend on earlier iterations
- consecutive iterations update consecutive array locations
- More precisely:
- Induction variable i is incremented by one in each iteration
- $i^{\text {th }}$ iteration unconditionally updates only a[i]
- No other variable declared outside the loop is modified
- $i^{\text {th }}$ iteration of the loop may not use elements of a that have been modified in earlier iterations
- Loops can often be automatically transformed into loops that satisfy these requirements

Satisfiability Checking

- Based on reductions to theories supported by SMT-solvers

Satisfiability Checking

- Based on reductions to theories supported by SMT-solvers
- One quantifier-based approach

Satisfiability Checking

- Based on reductions to theories supported by SMT-solvers
- One quantifier-based approach
- Two quantifier-free approaches
- Eager reduction
- Instantiation-based approach

Quantifier-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}

Quantifier-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add the constraint

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

Quantifier-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add the constraint

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

- Requires an SMT-solver that supports quantifiers

Quantifier-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add the constraint

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

- Requires an SMT-solver that supports quantifiers
- Does not provide a decision procedure in general

Eager Reduction

- Replace read(write(a,p,v),r) by

$$
\operatorname{ITE}(p=r, v, \operatorname{read}(a, r))
$$

Eager Reduction

- Replace read(write(a,p,v),r) by

$$
\operatorname{ITE}(p=r, v, \operatorname{read}(a, r))
$$

- Replace $\operatorname{read}(\lambda i . s, r)$ by

$$
s[i / r]
$$

Eager Reduction

- Replace read(write(a,p,v),r) by

$$
\operatorname{ITE}(p=r, v, \operatorname{read}(a, r))
$$

- Replace $\operatorname{read}(\lambda i . s, r)$ by

$$
s[i / r]
$$

- $\mathcal{T}_{\lambda \mathcal{A}}$ axioms are applied eagerly

Eager Reduction

- Replace read(write(a,p,v),r) by

$$
\operatorname{ITE}(p=r, v, \operatorname{read}(a, r))
$$

- Replace $\operatorname{read}(\lambda i . s, r)$ by

$$
s[i / r]
$$

- $\mathcal{T}_{\lambda \mathcal{A}}$ axioms are applied eagerly
- Can be used in combination with any solver that supports $\mathcal{T}_{\mathcal{A}}$ and the index and element theories

Instantiation-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}

Instantiation-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add needed instantiations of

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

Instantiation-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add needed instantiations of

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

- Needed instantiations are determined by reads that "depend" on a_{s}

Instantiation-Based Approach

- Replace $\lambda i . s$ by a fresh constant a_{s}
- Add needed instantiations of

$$
\forall r . \operatorname{read}\left(a_{s}, r\right)=s[i / r]
$$

to the formula

- Needed instantiations are determined by reads that "depend" on a_{s}
- Can be used in combination with any solver that supports $\mathcal{T}_{\mathcal{A}}$ and the index and element theories

Evaluation

- Done in the software bounded model checker LLBMC

Evaluation

- Done in the software bounded model checker LLBMC
- Uses bitvectors as index and element theories

Evaluation

- Done in the software bounded model checker LLBMC
- Uses bitvectors as index and element theories
- Applied on 81 benchmark programs
- 67 programs produce λ-terms obtained from memset or memcpy
- 14 program contain loops that can be summarized using λ-terms

Evaluation

- Done in the software bounded model checker LLBMC
- Uses bitvectors as index and element theories
- Applied on 81 benchmark programs
- 67 programs produce λ-terms obtained from memset or memcpy
- 14 program contain loops that can be summarized using λ-terms
- Of the resulting formulas, 20 are satisfiable and 61 are unsatisfiable

Evaluation

- Done in the software bounded model checker LLBMC
- Uses bitvectors as index and element theories
- Applied on 81 benchmark programs
- 67 programs produce λ-terms obtained from memset or memcpy
- 14 program contain loops that can be summarized using λ-terms
- Of the resulting formulas, 20 are satisfiable and 61 are unsatisfiable
- Evaluated three reductions and loop unrolling
- Quantifier-based approach using Z3 and CVC4
- Eager reduction and instantiation-based approach using STP, Boolector, Z3, and CVC4
- Loop unrolling approach using STP, Boolector, Z3, and CVC4

Results

SMT solver	Approach	Total Time	\# Solved Formulas	\# Timeouts	\# Aborts
STP	Instantiation	206.034	80	1	-
STP	Eager	779.544	70	11	-
STP	Loops	670.526	70	6	5
Boolector	Instantiation	818.782	71	10	-
Boolector	Eager	986.751	70	11	-
Boolector	Loops	1139.483	61	15	5
Z3	Instantiation	948.365	67	13	1
Z3	Eager	1043.632	66	15	-
Z3	Quantifiers	1122.489	65	16	-
Z3	Loops	1619.583	53	23	5
CVC4	Instantiation	928.079	67	14	-
CVC4	Eager	1119.748	65	16	-
CVC4	Quantifiers	1407.118	54	21	6
CVC4	Loops	1552.698	56	19	6

Results

Instantiation (STP) • Eager (STP)
Loops (STP)
Quantifiers (Z3)

Conclusion and Future Work

- $\mathcal{T}_{\lambda \mathcal{A}}$ is a useful, decidable extension of $\mathcal{T}_{\mathcal{A}}$

Conclusion and Future Work

- $\mathcal{T}_{\lambda \mathcal{A}}$ is a useful, decidable extension of $\mathcal{T}_{\mathcal{A}}$
- Performs better than unrolling for
- memset and memcpy
- summarizable loops

Conclusion and Future Work

- $\mathcal{T}_{\lambda \mathcal{A}}$ is a useful, decidable extension of $\mathcal{T}_{\mathcal{A}}$
- Performs better than unrolling for
- memset and memcpy
- summarizable loops
- Quantifier-free reductions perform better than Z3's and CVC4's reasoning involving quantifiers

Conclusion and Future Work

- $\mathcal{T}_{\lambda \mathcal{A}}$ is a useful, decidable extension of $\mathcal{T}_{\mathcal{A}}$
- Performs better than unrolling for
- memset and memcpy
- summarizable loops
- Quantifier-free reductions perform better than Z3's and CVC4's reasoning involving quantifiers
- Integration into an SMT-solver using "Lemmas-on-demand"/"lazy instantiation" is the next step

http://llbmc.org

