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Quantified SMT formulas

Traditional SMT solvers only deal with quantifier free formulas

Quantified SMT formulas are useful

Unsupported/customized theories

Type system in ESC/Java, Boogie
∀x1, x2, x3 : (subtype(x1, x2) ∧ subtype(x2, x3)→
subtype(x1, x3))

User assertions/invariants

∀x , y : (x ≤ y → read(a, x) ≤ read(a, y))

Many more......

Heaps, linked lists,...
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Quantifier Reasoning in SMT: a long-standing challenge

Mixed uninterpreted and interpreted symbols

Quantified SMT formulas

All 
uninterpreted

ATP

All interpreted
Quantifier 
Elimination

Difficult for a general solution

Uninterpreted functions + arithmetic : undecidable

Solutions

Theory resolution, SMT+ATP,...
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Instantiation Based Quantifier Reasoning in SMT

The big idea: Given quantified formula ∀x : P

1 Select some ground terms

2 Instantiate ∀x : P using ground terms from step 1
Let P ′ be the conjunction of instantiations

3 Check P ′

If P ′ is unsatisfiable, then ∀x : P is unsatisfiable
P ′ is quantifier free

Example

f (a) < 1 ∧ (∀x : f (x) > 2)

Select a as the ground term for instantiation

Instantiate ∀x : f (x) > 2 with x substituted by a

f (a) < 1 ∧ f (a) > 2, contradiction

What if P ′ is satisfiable?
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Incomplete vs Complete Instantiation

Instantiation based methods are attractive

Acceptable performance (E-matching,...)
Problem:Incompleteness

If P ′ is satisfiable, we can say nothing about the satisfiability
of ∀x : P

Can we have a complete method based on instantiation?

Ideally, given F , we would like to have a F ∗ such that :

F ∗ is quantifier free

F ∗ is the conjunction of instantiations of F

F and F ∗ are equi-satisfiable

Of course, only possible for formulas in some fragments

Array property fragment by Bradley et al

Linked list by Scott et al

In this talk, we will introduce a series of new fragments that can
be solved by complete instantiation
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New Fragments for Complete Instantiation

More Extensions

Arithmetic Literals

Essentially Uninterpreted

Two key issues for complete instantiation:

What to instantiate? How to collect ground terms for
instantiation?

Why complete? How to prove?
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Notations

x , y , x1, y1, ... denotes variables

a, b, c , ... are constants

f , g , h, ... are uninterpreted functions

+,−, ∗, <,≤, ... are interpreted arithmetic symbols

tM denotes the interpretation of term t in model M
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Essentially Uninterpreted Formulas

Definition (Essentially Uninterpreted)

Variables only appear as arguments of uninterpreted
functions/predicates

Example

f (x) + b > c, YES

f (x + y) > c , NO

A formula in pure first order logic is an EU formula

For complete instantiation, two key issues:

What to instantiate?

Why complete?
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Motivation Example

Is P(f (b)) ∧ Q(f (a)) ∧ ∀x : P(f (x)) satisfiable?

Yes.
Why?
My SMT solver finds M, a model for P(f (b)) ∧ Q(f (a)) ∧ P(f (a)).
So?
Then I construct a Mπ for P(f (b)) ∧ Q(f (a)) ∧ ∀x : P(f (x)).
From M?
Yes.
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We use f M(aM) to denote the interpretation of f (a) in model
M

One solution of Mπ is to let f Mπ
(e) be f M(aM) for every

element e except bM in the domain (Other solutions possible)

M:

aMbM

f M(aM)

f M(bM)

Mπ:

aMbM

f M(aM)

f M(bM)

f Mπ

We have PMπ
(f Mπ

(e)) holds for all e in the domain
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More notations

From now on, assume:

A formula is a set of CNF clauses

A clause is universally quantified at outermost scope

t[x1, x2, ..., xn] means term t may contains variables
x1, x2, ..., xn

t[x/t1] is the result of substituting t1 for all free occurrences
of x

t[x1/s1, x2/ss , ..., xn/sn] with the obvious meaning

t[S1,S2, ...,Sn] denotes the set
{t[x1/s1, x2/ss , ..., xn/sn] | si ∈ Si}, where Si are sets of terms
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Rules for Collecting Ground Terms for EU Formulas

Si and Af are sets of ground terms

Details skipped

Si contains ground terms for instantiating variable xi

Af contains all ground terms that can appear as argument of
f in the result of instantiation

Suppose f (t) appears in the quantified formula :

t is a ground term Af includes t

t is s[x1, ..., xn] Af contains s[S1, ...,Sn]

t is variable xj Af equals to Sj
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EU Example

F

g(x1) ≤ 0
g(f (x2)) + 1 ≤ f (x2)
f (a) = 0

Constraints —— Rules used

Ag = S1 x1 is a variable
f [S2] ⊆ Ag f (x2) contains variable x2

Af = S2 x2 is a variable
a ∈ Af a is ground

F ∗

g(f (a)) ≤ 0
g(f (a)) + 1 ≤ f (a)
f (a) = 0

Ground terms

Ag = {

f (a)

}
Af = {

a

}
S1 = {

f (a)

}
S2 = {

a

}

The ground terms are collected incrementally
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EU Example (Cont.)

F

g(x1) ≤ 0
g(f (x2)) + 1 ≤ f (x2)
f (a) = 0

F ∗

g(f (a)) ≤ 0
g(f (a)) + 1 ≤ f (a)
f (a) = 0

Mπ

Let a = 2
f = λx .0
g = λx .− 1

M

Let a = 2
f (a) = 0
g(0) = −1
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Proof of Completeness

Details skipped

The big idea:

Construct Mπ from M by defining interpretation for
uninterpreted functions (projection)
Assume F ∗ is satisfiable but F is not
Deduce contradiction

Theorem

Given F an essentially uninterpreted formula, F and F ∗ are
equi-satisfiable
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Finite F ∗

If F ∗ is finite, then we have a decision procedure

When F ∗ is finite?

The set {Si} is stratified
Details skipped
Better than sorts stratification

f (a) = a ∧ g(f (x)) = f (x)
a and f (a) must be in the same sort
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Herbrand Theorem and Finite F ∗

Let’s assume Q and P are uninterpreted predicates
Q(f (a)) ∧ ∀x : P(f (x))

Herbrand universe

{a, f (a), f (f (a)), ...}

In the standard Herbrand Theorem, we need to check the
satisfiability of
Q(f (a)) ∧ P(f (a)) ∧ P(f (f (a))) ∧ P(f (f (f (a))))...

In our theorem, we only need to check Q(f (a)) ∧ P(f (a))

Do we have a new decidable class (stratified) in pure first
order logic?

Yes, we have
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Refinement: Lazy construction of F ∗

F ∗ may be very big (even infinite)

By following the rules for collecting ground terms,
incrementally construct sequence F 0 ⊂ F 1 ⊂ ...
If F k is unsatisfiable, then return unsatisfiable

If F k is satisfiable, construct candidate model Mπk

If Mπk

is a model for all quantified formulas, return satisfiable

If Mπk

is not a model for all quantified formulas, continue
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Refinement: Model Checking Example

How to check if M is a model of a quantified formula ∀P?

Model M
h = λx . IF (x = 2) THEN 0 ELSE 1
g = λx , y . IF (x = 0 AND y = 2) THEN − 1 ELSE 0

Quantified Formula
∀x1, x2 : g(x1, x2) = 0 ∨ h(x2) = 0

Plug in the model
∀x1, x2 : (( IF (x1 = 0 ∧ x2 = 2) THEN − 1 ELSE 0) =
0) ∧ (IF (x2 = 2) THEN 0 ELSE 1) = 0

Check if valid (Send it to a SMT solver)

The above formula is valid and we conclude that M is indeed
a model for the quantified formula
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Refinement: Model Based Instantiation

Model checking can be used to select ground terms for
instantiation

Example

F f (x) ≤ 0, f (a) = 1,f (b) = −1
F 0 f (a) = 1,f (b) = −1

Mπ0 {a = 2, b = 3, f = λx .(IF x = 2 THEN 1 ELSE − 1)}

Model Checking:¬(( IF s = 2 THEN 1 ELSE − 1) < 0)

Satisfiable, with s = 2

Because a = 2 in Mπ0

Instantiate x with a

F 1 f (a) = 1,f (b) = −1, f (a) < 0

Unsatisfiable
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Infinite F ∗ and Refutation Complete

When F ∗ is infinite, is the procedure refutation complete?

Not always

F : unsatisfiable, x ranges over integers

f (x1) < f (f (x1)) f is always increasing
f (x2) < a f has a up limit
1 < f (0) f has a bottom

F ∗ : every finite subset is satisfiable

f (0) < f (f (0)), f (f (0)) < f (f (f (0))), ...
f (0) < a, f (f (0)) < a, ...
1 < f (0)

Refutation complete, if we assume the background theory is a
(potentially infinite) set of sentences
Refutation incomplete, if the background theory is a class of
structures (Why? Compactness no longer holds)
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Arithmetic Literals

Definition (Arithmetic Literals)

Variables in a CNF clause may appear in literals of the form:
¬(xi ≤ xj),¬(xi ≤ t),¬(t ≤ xi ), xi = t

Details skipped, we have similar rules for arithmetic literals

Example

¬(xi ≤ xj) ∨ A[xi ] ≤ A[xj ]
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More Extensions

Offsets

xi + 2
¬(0 ≤ xi ) ∨ ¬(xi ≤ n) ∨ f (xi ) = g(xi + 2)

Modular equalities

¬(xi =n t), means xi = t + n ∗ c , n is an integer and c is a
constant
¬(x1 =4 0) ∨ (star(x1) = e)

Pseudo-macros
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Related Works

Array property fragment

No nested application of uninterpreted functions
P(f (g(x))), NO

“What else is decidable” by Habermehl et al

Literals of the form xi − xi ≤ c are allowed
In a clause, at most one literal of the form f (xi )− g(xi ) ≤ c is
allowed
No other type literal allowed, no nested applications
Proof based on a customized automaton, implementation
unknown

Local Theories

Certain quantified formulas can be added upon other decidable
fragments
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Summary

Several new fragments that can be decided by complete
instantiation

Model checking and model based instantiation

Conditions for refutation complete

Z3 was the only solver could return SAT for satisfiable
quantified formulas in SMT COMP 2008

Future works:

Efficient implementation

More fragments for complete instantiation
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Thank you

Questions?
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