Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories

Yeting Ge¹ Leonardo de Moura²

¹New York University

²Microsoft Research

7th International Workshop on Satisfiability Modulo Theories

Aug 3, 2009 Montreal. Canada

- Traditional SMT solvers only deal with quantifier free formulas
- Quantified SMT formulas are useful

Quantified SMT formulas

- Traditional SMT solvers only deal with quantifier free formulas
- Quantified SMT formulas are useful
- Unsupported/customized theories
 - Type system in ESC/Java, Boogie
 - $\forall x_1, x_2, x_3 : (subtype(x_1, x_2) \land subtype(x_2, x_3) \rightarrow subtype(x_1, x_3))$

Quantified SMT formulas

- Traditional SMT solvers only deal with quantifier free formulas
- Quantified SMT formulas are useful
- Unsupported/customized theories
 - Type system in ESC/Java, Boogie
 - $\forall x_1, x_2, x_3 : (subtype(x_1, x_2) \land subtype(x_2, x_3) \rightarrow subtype(x_1, x_3))$
- User assertions/invariants
 - $\forall x, y : (x \leq y \rightarrow read(a, x) \leq read(a, y))$

Quantified SMT formulas

- Traditional SMT solvers only deal with quantifier free formulas
- Quantified SMT formulas are useful
- Unsupported/customized theories
 - Type system in ESC/Java, Boogie
 - $\forall x_1, x_2, x_3 : (subtype(x_1, x_2) \land subtype(x_2, x_3) \rightarrow subtype(x_1, x_3))$
- User assertions/invariants
 - $\forall x, y : (x \leq y \rightarrow read(a, x) \leq read(a, y))$
- Many more.....
 - Heaps, linked lists,...

Quantifier Reasoning in SMT: a long-standing challenge

• Mixed uninterpreted and interpreted symbols

Quantifier Reasoning in SMT: a long-standing challenge

• Mixed uninterpreted and interpreted symbols

- Difficult for a general solution
 - $\bullet~$ Uninterpreted functions +~ arithmetic : undecidable

Quantifier Reasoning in SMT: a long-standing challenge

• Mixed uninterpreted and interpreted symbols

- Difficult for a general solution
 - $\bullet~$ Uninterpreted functions +~ arithmetic : undecidable
- Solutions
 - Theory resolution, SMT+ATP,...

The big idea: Given quantified formula $\forall x : P$

The big idea: Given quantified formula $\forall x : P$

Select some ground terms

The big idea: Given quantified formula $\forall x : P$

- Select some ground terms
- Instantiate ∀x : P using ground terms from step 1 Let P' be the conjunction of instantiations

The big idea: Given quantified formula $\forall x : P$

- Select some ground terms
- Instantiate ∀x : P using ground terms from step 1 Let P' be the conjunction of instantiations
- Check P'
 - If P' is unsatisfiable, then $\forall x : P$ is unsatisfiable
 - P' is quantifier free

The big idea: Given quantified formula $\forall x : P$

- Select some ground terms
- Instantiate ∀x : P using ground terms from step 1 Let P' be the conjunction of instantiations
- Check P'
 - If P' is unsatisfiable, then $\forall x : P$ is unsatisfiable
 - P' is quantifier free

Example

- $f(a) < 1 \land (\forall x : f(x) > 2)$
 - Select *a* as the ground term for instantiation
 - Instantiate $\forall x : f(x) > 2$ with x substituted by a
 - $f(a) < 1 \land f(a) > 2$, contradiction

The big idea: Given quantified formula $\forall x : P$

- Select some ground terms
- Instantiate ∀x : P using ground terms from step 1 Let P' be the conjunction of instantiations
- Check P'
 - If P' is unsatisfiable, then $\forall x : P$ is unsatisfiable
 - P' is quantifier free

Example

- $f(a) < 1 \land (\forall x : f(x) > 2)$
 - Select *a* as the ground term for instantiation
 - Instantiate $\forall x : f(x) > 2$ with x substituted by a
 - $f(a) < 1 \land f(a) > 2$, contradiction

What if *P'* is satisfiable?

Incomplete vs Complete Instantiation

- Instantiation based methods are attractive
- Acceptable performance (E-matching,...)
- Problem:Incompleteness
 - If P' is satisfiable, we can say nothing about the satisfiability of ∀x : P

In this talk, we will introduce a series of new fragments that can be solved by complete instantiation

Incomplete vs Complete Instantiation

- Instantiation based methods are attractive
- Acceptable performance (E-matching,...)
- Problem:Incompleteness
 - If P' is satisfiable, we can say nothing about the satisfiability of ∀x : P

Can we have a complete method based on instantiation?

Ideally, given F, we would like to have a F^* such that :

- F* is quantifier free
- F^* is the conjunction of instantiations of F
- F and F* are equi-satisfiable

In this talk, we will introduce a series of new fragments that can be solved by complete instantiation

Incomplete vs Complete Instantiation

- Instantiation based methods are attractive
- Acceptable performance (E-matching,...)
- Problem:Incompleteness
 - If P' is satisfiable, we can say nothing about the satisfiability of ∀x : P

Can we have a complete method based on instantiation?

Ideally, given F, we would like to have a F^* such that :

- F* is quantifier free
- F^* is the conjunction of instantiations of F
- F and F* are equi-satisfiable

Of course, only possible for formulas in some fragments

- Array property fragment by Bradley et al
- Linked list by Scott et al

In this talk, we will introduce a series of new fragments that can be solved by complete instantiation

New Fragments for Complete Instantiation

More Extensions

Arithmetic Literals

Essentially Uninterpreted

New Fragments for Complete Instantiation

Two key issues for complete instantiation:

- What to instantiate? How to collect ground terms for instantiation?
- Why complete? How to prove?

- x, y, x₁, y₁, ... denotes variables
- *a*, *b*, *c*, ... are constants
- f, g, h, ... are uninterpreted functions
- $+, -, *, <, \leq, \dots$ are interpreted arithmetic symbols
- t^M denotes the interpretation of term t in model M

Variables only appear as arguments of uninterpreted functions/predicates

- What to instantiate?
- Why complete?

Variables only appear as arguments of uninterpreted functions/predicates

Example

•
$$f(x) + b > c$$
, YES

- What to instantiate?
- Why complete?

Variables only appear as arguments of uninterpreted functions/predicates

Example

•
$$f(x) + b > c$$
, YES

•
$$f(x+y) > c$$
, NO

- What to instantiate?
- Why complete?

Variables only appear as arguments of uninterpreted functions/predicates

Example

- f(x) + b > c, YES
- f(x + y) > c, NO
- A formula in pure first order logic is an EU formula

- What to instantiate?
- Why complete?

Yes.			
Why?			

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

Yes.

Why?

My SMT solver finds *M*, a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.

Yes.
Why?
My SMT solver finds M , a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.
So?

Yes.
Why?
My SMT solver finds <i>M</i> , a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.
So?
Then I construct a M^{π} for $P(f(b)) \wedge Q(f(a)) \wedge \forall x : P(f(x))$.

Yes.
Why?
My SMT solver finds M , a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.
So?
Then I construct a M^{π} for $P(f(b)) \wedge Q(f(a)) \wedge \forall x : P(f(x))$.
From <i>M</i> ?

Yes.
Why?
My SMT solver finds <i>M</i> , a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.
So?
Then I construct a M^{π} for $P(f(b)) \wedge Q(f(a)) \wedge \forall x : P(f(x))$.
From <i>M</i> ?
Yes.

Yes.
Why?
My SMT solver finds <i>M</i> , a model for $P(f(b)) \land Q(f(a)) \land P(f(a))$.
So?
Then I construct a M^{π} for $P(f(b)) \wedge Q(f(a)) \wedge \forall x : P(f(x))$.
From <i>M</i> ?
Yes.

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

We use f^M(a^M) to denote the interpretation of f(a) in model

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

We use f^M(a^M) to denote the interpretation of f(a) in model

Motivation Example

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

- We use f^M(a^M) to denote the interpretation of f(a) in model
- One solution of M^{π} is to let $f^{M^{\pi}}(e)$ be $f^{M}(a^{M})$ for every element e except b^{M} in the domain (Other solutions possible)

Motivation Example

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

- We use f^M(a^M) to denote the interpretation of f(a) in model
- One solution of M^{π} is to let $f^{M^{\pi}}(e)$ be $f^{M}(a^{M})$ for every element e except b^{M} in the domain (Other solutions possible)

Motivation Example

Is $P(f(b)) \land Q(f(a)) \land \forall x : P(f(x))$ satisfiable?

- We use f^M(a^M) to denote the interpretation of f(a) in model
- One solution of M^{π} is to let $f^{M^{\pi}}(e)$ be $f^{M}(a^{M})$ for every element e except b^{M} in the domain (Other solutions possible)

• We have $P^{M^{\pi}}(f^{M^{\pi}}(e))$ holds for all e in the domain

From now on, assume:

- A formula is a set of CNF clauses
- A clause is universally quantified at outermost scope
- $t[x_1, x_2, ..., x_n]$ means term t may contains variables $x_1, x_2, ..., x_n$
- t[x/t₁] is the result of substituting t₁ for all free occurrences of x
- $t[x_1/s_1, x_2/s_s, ..., x_n/s_n]$ with the obvious meaning
- $t[S_1, S_2, ..., S_n]$ denotes the set $\{t[x_1/s_1, x_2/s_s, ..., x_n/s_n] \mid s_i \in S_i\}$, where S_i are sets of terms

Rules for Collecting Ground Terms for EU Formulas

- S_i and A_f are sets of ground terms
- Details skipped
- S_i contains ground terms for instantiating variable x_i
- A_f contains all ground terms that can appear as argument of f in the result of instantiation

Rules for Collecting Ground Terms for EU Formulas

- S_i and A_f are sets of ground terms
- Details skipped
- S_i contains ground terms for instantiating variable x_i
- A_f contains all ground terms that can appear as argument of f in the result of instantiation
- Suppose f(t) appears in the quantified formula :

t is a ground term	A _f includes t
$t \text{ is } s[x_1,, x_n]$	A_f contains $s[S_1,, S_n]$
t is variable x _j	A_f equals to S_j

$egin{aligned} g(x_1) &\leq 0 \ g(f(x_2)) + 1 &\leq f(x_2) \ f(a) &= 0 \end{aligned}$

$$egin{aligned} & A_g = S_1 \ & f[S_2] \subseteq A_g \ & A_f = S_2 \ & a \in A_f \end{aligned}$$

$g(x_1) \le 0 g(f(x_2)) + 1 \le f(x_2) f(a) = 0$

$A_g = S_1$
$f[S_2] \subseteq A_{\beta}$
$A_f = S_2$
$a \in A_f$

$g(x_1) \le 0 g(f(x_2)) + 1 \le f(x_2) f(a) = 0$

Constraints —— Rules used	
$A_g = S_1$	x_1 is a variable
$f[S_2] \subseteq A_g$	$f(x_2)$ contains variable x_2
$A_f = S_2$	x_2 is a variable
$a \in A_f$	<i>a</i> is ground

F

$g(x_1) \le 0 g(f(x_2)) + 1 \le f(x_2) f(a) = 0$

Constraints —— Rules used	
$A_g = S_1$	x_1 is a variable
$f[S_2] \subseteq A_g$	$f(x_2)$ contains variable x_2
$A_f = S_2$	x_2 is a variable
$a \in A_f$	a is ground

$egin{aligned} g(x_1) &\leq 0 \ g(f(x_2)) + 1 &\leq f(x_2) \ f(a) &= 0 \end{aligned}$

$$A_g = S_1$$

$$f[S_2] \subseteq A_g$$

$$A_f = S_2$$

$$a \in A_f$$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$$A_g = S_1$$

$$f[S_2] \subseteq A_g$$

$$A_f = S_2$$

$$a \in A_f$$

Ground terms

$$A_g = \{ \}$$
 $A_f = \{a\}$
 $S_1 = \{ \}$
 $S_2 = \{ \}$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$$A_g = S_1$$

$$f[S_2] \subseteq A_{\xi}$$

$$A_f = S_2$$

$$a \in A_f$$

Ground terms

$$A_g = \{ \}$$
 $A_f = \{a\}$
 $S_1 = \{ \}$
 $S_2 = \{ \}$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$$A_g = S_1$$

$$f[S_2] \subseteq A_g$$

$$A_f = S_2$$

$$a \in A_f$$

Ground terms

$$A_g = \{ \}$$
 $A_f = \{a\}$
 $S_1 = \{ \}$
 $S_2 = \{a\}$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$$A_g = S_1$$

$$f[S_2] \subseteq A_{\xi}$$

$$A_f = S_2$$

$$a \in A_f$$

Ground terms

$$A_g = \{ \ \}$$
 $A_f = \{a\}$
 $S_1 = \{ \ \}$
 $S_2 = \{a\}$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$$A_g = S_1$$

$$f[S_2] \subseteq A_{\xi}$$

$$A_f = S_2$$

$$a \in A_f$$

Ground terms

$$A_g = \{f(a)\}$$
 $A_f = \{a\}$
 $S_1 = \{a\}$
 $S_2 = \{a\}$

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

$A_g = S_1$
$f[S_2] \subseteq A_{\beta}$
$A_f = S_2$
$a\in A_f$

Ground terms	
$A_g = \{f(a)\}$	
$A_f = \{a\}$	
$S_1 = \{ \}$	
$S_2 = \{a\}$	

⊢

$$g(x_1) \le 0$$

 $g(f(x_2)) + 1 \le f(x_2)$
 $f(a) = 0$

Constraints —— Rules used

$A_g = S_1$
$f[S_2] \subseteq A_{\ell}$
$A_f = S_2$
$a \in A_f$

$$x_1$$
 is a variable
 $f(x_2)$ contains variable x_2
 x_2 is a variable
 a is ground

Ground terms

$$A_g = \{f(a)\}$$
 $A_f = \{a\}$
 $S_1 = \{f(a)\}$
 $S_2 = \{a\}$

$$\begin{aligned} g(x_1) &\leq 0 \\ g(f(x_2)) + 1 &\leq f(x_2) \\ f(a) &= 0 \end{aligned}$$

$$A_g = S_1$$

$$f[S_2] \subseteq A_g$$

$$A_f = S_2$$

$$a \in A_f$$

$$x_1$$
 is a variable
 $f(x_2)$ contains variable x_2
 x_2 is a variable
 a is ground

Ground terms

$$A_g = \{f(a)\}$$
 $A_f = \{a\}$
 $S_1 = \{f(a)\}$
 $S_2 = \{a\}$

• The ground terms are collected incrementally

• The ground terms are collected incrementally

EU Example (Cont.)

 $g(x_1) \le 0$ $g(f(x_2)) + 1 \le f(x_2)$ f(a) = 0

F*

 $egin{aligned} g(f(a)) &\leq 0 \ g(f(a)) + 1 &\leq f(a) \ f(a) &= 0 \end{aligned}$

EU Example (Cont.)

 $g(x_1) \le 0$ $g(f(x_2)) + 1 \le f(x_2)$ f(a) = 0

$$egin{aligned} g(f(a)) &\leq 0 \ g(f(a)) + 1 &\leq f(a) \ f(a) &= 0 \end{aligned}$$

M
Let
$$a = 2$$

 $f(a) = 0$
 $g(0) = -1$

EU Example (Cont.)

- Details skipped
- The big idea:
 - Construct M^π from M by defining interpretation for uninterpreted functions (projection)
 - Assume *F*^{*} is satisfiable but *F* is not
 - Deduce contradiction

Theorem

Given F an essentially uninterpreted formula, F and F^* are equi-satisfiable

- If F^* is finite, then we have a decision procedure
- When *F** is finite?
 - The set $\{S_i\}$ is stratified
 - Details skipped
 - Better than sorts stratification
 - $f(a) = a \wedge g(f(x)) = f(x)$
 - a and f(a) must be in the same sort

- Herbrand universe
 - {*a*, *f*(*a*), *f*(*f*(*a*)), ...}

- Herbrand universe
 - {a, f(a), f(f(a)), ...}
- In the standard Herbrand Theorem, we need to check the satisfiability of $Q(f(a)) \wedge P(f(a)) \wedge P(f(f(a))) \wedge P(f(f(a)))$...

- Herbrand universe
 - {*a*, *f*(*a*), *f*(*f*(*a*)), ...}
- In the standard Herbrand Theorem, we need to check the satisfiability of $Q(f(a)) \wedge P(f(a)) \wedge P(f(f(a))) \wedge P(f(f(a)))$...
- In our theorem, we only need to check $Q(f(a)) \wedge P(f(a))$

- Herbrand universe
 - {*a*, *f*(*a*), *f*(*f*(*a*)), ...}
- In the standard Herbrand Theorem, we need to check the satisfiability of $Q(f(a)) \wedge P(f(a)) \wedge P(f(f(a))) \wedge P(f(f(a))) \dots$
- In our theorem, we only need to check $Q(f(a)) \wedge P(f(a))$
- Do we have a new decidable class (stratified) in pure first order logic?

- Herbrand universe
 - {*a*, *f*(*a*), *f*(*f*(*a*)), ...}
- In the standard Herbrand Theorem, we need to check the satisfiability of $Q(f(a)) \wedge P(f(a)) \wedge P(f(f(a))) \wedge P(f(f(a))) \dots$
- In our theorem, we only need to check $Q(f(a)) \wedge P(f(a))$
- Do we have a new decidable class (stratified) in pure first order logic?
- Yes, we have

- F* may be very big (even infinite)
- By following the rules for collecting ground terms, incrementally construct sequence F⁰ ⊂ F¹ ⊂ ...
- If F^k is unsatisfiable, then return unsatisfiable
- If F^k is satisfiable, construct candidate model M^{π^k}
 - If M^{π^k} is a model for all quantified formulas, return satisfiable
 - If M^{π^k} is not a model for all quantified formulas, continue

- Model *M*
 - $h = \lambda x$. IF (x = 2) THEN 0 ELSE 1
 - $g = \lambda x, y$. IF (x = 0 AND y = 2) THEN -1 ELSE 0
- Quantified Formula $\forall x1, x2 : g(x1, x2) = 0 \lor h(x2) = 0$

- Model *M*
 - $h = \lambda x$. IF (x = 2) THEN 0 ELSE 1
 - $g = \lambda x, y$. IF (x = 0 AND y = 2) THEN -1 ELSE 0
- Quantified Formula $\forall x1, x2 : g(x1, x2) = 0 \lor h(x2) = 0$
- Plug in the model
 ∀x1, x2 : ((IF (x1 = 0 ∧ x2 = 2) THEN 1 ELSE 0) =
 0) ∧ (IF (x2 = 2) THEN 0 ELSE 1) = 0

- Model *M*
 - $h = \lambda x$. IF (x = 2) THEN 0 ELSE 1
 - $g = \lambda x, y$. IF (x = 0 AND y = 2) THEN -1 ELSE 0
- Quantified Formula $\forall x1, x2 : g(x1, x2) = 0 \lor h(x2) = 0$
- Plug in the model
 ∀x1, x2 : ((IF (x1 = 0 ∧ x2 = 2) THEN 1 ELSE 0) =
 0) ∧ (IF (x2 = 2) THEN 0 ELSE 1) = 0
- Check if valid (Send it to a SMT solver)

- Model *M*
 - $h = \lambda x$. IF (x = 2) THEN 0 ELSE 1
 - $g = \lambda x, y$. IF (x = 0 AND y = 2) THEN -1 ELSE 0
- Quantified Formula $\forall x1, x2 : g(x1, x2) = 0 \lor h(x2) = 0$
- Plug in the model $\forall x1, x2 : ((IF (x1 = 0 \land x2 = 2) THEN - 1 ELSE 0) = 0) \land (IF (x2 = 2) THEN 0 ELSE 1) = 0$
- Check if valid (Send it to a SMT solver)
- The above formula is valid and we conclude that *M* is indeed a model for the quantified formula

Refinement: Model Based Instantiation

• Model checking can be used to select ground terms for instantiation

Example

$$F = \begin{cases} f(x) \le 0, \ f(a) = 1, f(b) = -1 \\ f(a) = 1, f(b) = -1 \\ M^{\pi^0} \end{cases}$$
 $f(a) = 2, \ b = 3, \ f = \lambda x. (IF \ x = 2 \ THEN \ 1 \ ELSE \ -1)$
Refinement: Model Based Instantiation

• Model checking can be used to select ground terms for instantiation

Example

$$\begin{array}{l} F \\ F^0 \\ M^{\pi^0} \end{array} \left| \begin{array}{l} f(x) \leq 0, \ f(a) = 1, f(b) = -1 \\ f(a) = 1, f(b) = -1 \\ \{a = 2, b = 3, f = \lambda x. (\mathsf{IF} \ x = 2 \ \mathsf{THEN} \ 1 \ \mathsf{ELSE} \ -1) \end{array} \right.$$

- Model Checking: \neg ((IF s = 2 THEN 1 ELSE -1) < 0)
- Satisfiable, with s = 2

Refinement: Model Based Instantiation

• Model checking can be used to select ground terms for instantiation

Example

F F

$$\begin{array}{c|c} f(x) \leq 0, \ f(a) = 1, f(b) = -1 \\ f(a) = 1, f(b) = -1 \end{array}$$

$$M^{\pi^0} \mid \{a = 2, b = 3, f = \lambda x. (\text{IF } x = 2 \text{ THEN } 1 \text{ ELSE } -1)\}$$

- Model Checking: \neg ((IF s = 2 THEN 1 ELSE -1) < 0)
- Satisfiable, with s = 2
- Because a = 2 in M^{π^0}
- Instantiate x with a

Refinement: Model Based Instantiation

• Model checking can be used to select ground terms for instantiation

Example

F

F⁰ M

$$\begin{array}{c|c} f(x) \leq 0, \ f(a) = 1, f(b) = -\\ f(a) = 1, f(b) = -1 \end{array}$$

$$M^{\pi^0} \mid \{a = 2, b = 3, f = \lambda x. (\text{IF } x = 2 \text{ THEN } 1 \text{ ELSE } -1)\}$$

1

- Model Checking: \neg ((IF s = 2 THEN 1 ELSE -1) < 0)
- Satisfiable, with s = 2
- Because a = 2 in M^{π^0}
- Instantiate x with a
- $F^1 \mid f(a) = 1, f(b) = -1, f(a) < 0$
 - Unsatisfiable

Infinite F* and Refutation Complete

When F^* is infinite, is the procedure refutation complete?

F : unsatisfiable, 🗙 ranges over integers		
$f(x_1) < f(f(x_1))$	f is always increasing	
$f(x_2) < a$	f has a up limit	
1 < f(0)	f has a bottom	

: every finite subset is satisfiable

$$\begin{split} f(0) &< f(f(0)), f(f(0)) < f(f(f(0))), ... \\ f(0) &< a, f(f(0)) < a, ... \\ 1 &< f(0) \end{split}$$

Infinite *F*^{*} and Refutation Complete

When *F** is infinite, is the procedure refutation complete?Not always

: unsatisfiable, x ranges over integers

 $\begin{array}{ll} f(x_1) < f(f(x_1)) & f \text{ is always increasing} \\ f(x_2) < a & f \text{ has a up limit} \\ 1 < f(0) & f \text{ has a bottom} \end{array}$

* : every finite subset is satisfiable

$$\begin{split} f(0) &< f(f(0)), f(f(0)) < f(f(f(0))), ... \\ f(0) &< a, f(f(0)) < a, ... \\ 1 &< f(0) \end{split}$$

Infinite *F*^{*} and Refutation Complete

When *F** is infinite, is the procedure refutation complete?Not always

<i>F</i> : unsatisfiable, x ranges over integers			
$f(x_1) < f(f(x_1))$ $f(x_2) < a$ 1 < f(0)	 <i>f</i> is always increasing <i>f</i> has a up limit <i>f</i> has a bottom 		

: every finite subset is satisfiable

```
 \begin{split} f(0) &< f(f(0)), f(f(0)) < f(f(f(0))), ... \\ f(0) &< a, f(f(0)) < a, ... \\ 1 &< f(0) \end{split}
```

• Refutation complete, if we assume the background theory is a (potentially infinite) set of sentences

Infinite *F*^{*} and Refutation Complete

When *F** is infinite, is the procedure refutation complete?Not always

F : unsatisfiable, x ranges over integers				
$f(x_1) < f(f(x_1))$	f is always increasing			
$f(x_2) < a$	<i>f</i> has a up limit			
1 < f(0)	<i>f</i> has a bottom			

: every finite subset is satisfiable

$$\begin{split} f(0) &< f(f(0)), f(f(0)) < f(f(f(0))), ... \\ f(0) &< a, f(f(0)) < a, ... \\ 1 &< f(0) \end{split}$$

- Refutation complete, if we assume the background theory is a (potentially infinite) set of sentences
- Refutation incomplete, if the background theory is a class of structures (Why? Compactness no longer holds)

Definition (Arithmetic Literals)

Variables in a CNF clause may appear in literals of the form: $\neg(x_i \le x_j), \neg(x_i \le t), \neg(t \le x_i), x_i = t$

Definition (Arithmetic Literals)

Variables in a CNF clause may appear in literals of the form: $\neg(x_i \le x_j), \neg(x_i \le t), \neg(t \le x_i), x_i = t$

Details skipped, we have similar rules for arithmetic literals

Definition (Arithmetic Literals)

Variables in a CNF clause may appear in literals of the form: $\neg(x_i \le x_j), \neg(x_i \le t), \neg(t \le x_i), x_i = t$

Details skipped, we have similar rules for arithmetic literals

Example

 $\neg (x_i \leq x_j) \lor A[x_i] \leq A[x_j]$

Offsets

- $x_i + 2$ • $\neg (0 \le x_i) \lor \neg (x_i \le n) \lor f(x_i) = g(x_i + 2)$
- Modular equalities
 - $\neg(x_i =_n t)$, means $x_i = t + n * c$, *n* is an integer and *c* is a constant
 - $\neg(x_1 =_4 0) \lor (star(x_1) = e)$
- Pseudo-macros

- Array property fragment
 - No nested application of uninterpreted functions
 - *P*(*f*(*g*(*x*))), NO
- "What else is decidable" by Habermehl et al
 - Literals of the form $x_i x_i \leq c$ are allowed
 - In a clause, at most one literal of the form $f(x_i) g(x_i) \le c$ is allowed
 - No other type literal allowed, no nested applications
 - Proof based on a customized automaton, implementation unknown
- Local Theories
 - Certain quantified formulas can be added upon other decidable fragments

- Several new fragments that can be decided by complete instantiation
- Model checking and model based instantiation
- Conditions for refutation complete
- Z3 was the only solver could return SAT for satisfiable quantified formulas in SMT COMP 2008

Future works:

- Efficient implementation
- More fragments for complete instantiation

• Questions?